Prova scritta di Fisica e Statistica

PARTE DI FISICA

1 settembre 2000

ATTENZIONE: QUESTO TESTO CONSISTE DI DUE PAGINE!

I problemi da 1 a 3 sono per TUTTI i DU.

1.	Un condotto	orizzontale l	na sezione rett	angolare. I	l rettangolo	ha lati	di lunghezz	a rispet-
	tivamente 1.5	5 cm e 2 cm.	Il condotto è	percorso da	a un fluido;	la port	ata è 5 ${ m cm}^3$,	$/_{\mathbf{S}}.$

(b) Il condotto presenta un restringimento a un certo punto, in cui l'area della sezione si riduce del 15%. Si calcoli di quanto varia la velocità del fluido in corrispondenza del restringimento.

- 2. Una persona spinge una barella con una forza di 100 N diretta orizzontalmente.
 - (a) Se il tratto percorso è di 5 m, si calcoli quanto vale il lavoro fatto dalla persona.

	erogata ?
3.	Abbiamo letto sui giornali che il sommergibile Kursk si trova a una profondità di 100 m. Supponendo che la densità dell'acqua di mare sia pari a 1 g/cm 3 , si calcoli quanto vale la pressione a quella profondità.
4.	Il problema 4 è solo per i Tecnici di Laboratorio Un condensatore di capacità 15 pF è connesso a una differenza di potenziale di 100 V. Quante cariche elementari sono depositate sulle sue armature ?
5.	Il problema seguente è per tutti ECCETTO i Tecnici di Laboratorio Un oggetto di massa 100 kg si muove su una traiettoria circolare di raggio 1 km con periodo di 1 ora. Si calcoli la forza centripeta necessaria.

(b) Se la barella si muove con velocità costante pari a 1 m/s, quanto vale la potenza