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For nearly 350 years, veterinary medicine and human medicine 
have been separate entities, with one geared toward the diagnosis and treat-
ment in animals and the other toward parallel goals in the owners. However, 

that model no longer fits, since research on diseases of humans and companion 
animals has coalesced.1-4 The catalyst for this union has been the completion of the 
human genome sequence, coupled with draft sequence assemblies of genomes for 
companion animals.5,6 Here, we summarize the critical events in canine genetics and 
genomics that have led to this development, review major applications in canine 
health that will be of interest to human caregivers, and discuss expectations for the 
future.

Hum a n a nd C a nine Genomics

In 2001, two independent draft versions of the human genome sequence and the con-
comitant identification of approximately 30,000 genes were the seminal events that 
defined completion of the Human Genome Project.7,8 The genome was officially de-
clared to be finished in 2004, with sequencing reported to include 99% of transcribing 
DNA.9 By comparison, the genome of the domestic dog, Canis lupus familiaris, was se-
quenced twice, once to 1.5× density (i.e., covering the genome, in theory, 1.5 times) 
and once to 7.8× density (providing sequencing for more than 95% of base pairs) in the 
standard poodle and boxer, respectively.5,10 Subsequent contributions to the canine 
genome have focused on better annotation to locate missing genes,11 understanding 
chromosome structure,12 studying linkage disequilibrium,5,13 identifying copy-number 
variants,14-16 and mapping the transcriptome.17

The use of the canine genome to understand the genetic underpinning of dis-
orders that are difficult to disentangle in humans has been on the rise for nearly two 
decades.1,2,18 The reason relates back to the domestication of dogs from gray wolves 
(C. lupus), an event that began at least 30,000 years ago.19-21 Since their domestication, 
dogs have undergone continual artificial selection at varying levels of intensity, 
leading to the development of isolated populations or breeds5,22,23 (Fig. 1). Many 
breeds were developed during Victorian times24 and have been in existence for only a 
few hundred years, a drop in the evolutionary bucket.25 Most breeds are descended 
from small numbers of founders and feature so-called popular sires (dogs that have 
performed well at dog shows and therefore sire a large number of litters). Thus, the 
genetic character of such founders is overrepresented in the population.25,26 These 
facts, coupled with breeding programs that exert strong selection for particular 
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physical traits, mean that recessive diseases are 
common in purebred dogs,22,27,28 and many breeds 
are at increased risk for specific disorders.2,29 We, 
and others, have chosen to take advantage of this 
fact in order to identify genes of interest for hu-
man and canine health.

The Gene tic Pow er of C a nine 
Fa milies

One of the most striking features of canine fam-
ilies is their large size, which makes them ame-
nable to conventional linkage mapping. This fact 
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Figure 1. The Diversity of Dog Breeds.

Breeds vary according to many traits, including size, leg length, pelage (coat), color, and skull shape. Shown are borzoi 
(Panel A), basset hound (Panel B), Chihuahua (Panel C), giant schnauzer (Panel D), bichon frise (Panel E), collie 
(Panel F), French bulldog (Panel G), dachshund (Panel H), German shorthaired pointer (Panel I), papillon (Panel J), 
and Neapolitan mastiff (Panel K). (Images courtesy of Mary Bloom, American Kennel Club.)
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was particularly well illustrated in the search for 
the canine gene for hereditary multifocal renal 
cystadenocarcinoma and nodular dermatofibro-
sis (RCND) in German shepherds.30 Although rare, 
RCND is a naturally occurring inherited cancer 
syndrome that includes bilateral, multifocal tu-
mors in kidneys and numerous, dense collagen-
based nodules in the skin,31 a disorder that is 
similar to the Birt–Hogg–Dubé syndrome (BHD) 
in humans.32 In dogs, the disease allele is highly 
penetrant and transmitted in an autosomal dom-
inant fashion. The dog pedigree that was used for 
mapping the disease included one affected found-
er male who sired several litters (Fig. 2). With DNA 
available from nearly all dogs, this single pedigree 
had sufficient power to localize the disease gene 
to canine chromosome 5q12 with a logarithm of 
odds (LOD) score of 4.6, giving odds of more 
than 10,000 to 1 that the mapping was correct.30

After the localization of RCND, the human 
BHD locus was mapped to human chromosome 
17p12q11,33 which corresponds to canine chro-
mosome 5q12. Both affected dogs and humans 
were found to carry mutations in the same gene 
encoding tumor-suppressor protein folliculin,34,35 
which is hypothesized to interact with the energy 
and nutrient-sensing signaling pathway consist-
ing of AMP-activated protein kinase (AMPK) and 
mammalian target of rapamycin (mTOR).36

Three issues about this example are striking. 
First, the single, large dog pedigree was collected 
and genotyped in a fraction of the time it took to 
collect and characterize the many necessary hu-
man pedigrees. Second, BHD is associated with 
substantial variability in disease presentation in 
humans and may be hard to distinguish from 
similar disorders.37 In the case of the large ex-
tended dog family, phenotyping was easy, since 
every dog had the same genetic background and 
the disease presentation was highly uniform. Also, 
the dog locus was found before the human locus. 
Other disease genes that were first mapped in dogs 
for which there is a close human proxy include 
narcolepsy,38 copper toxicosis,39,40 neuronal ceroid 
lipofuscinosis,41 and ichthyosis,42 to name a few.

Each of such stories is illuminating in its own 
way. In the case of narcolepsy in the Doberman 
pinscher, the identification of a mutation in the 
gene encoding hypocretin receptor 2 suggested a 
newly recognized pathway that is involved in the 
molecular biology of sleep. Another example is 
canine neuronal ceroid lipofuscinosis, a late-onset 

disorder of American Staffordshire terriers with 
symptoms that are similar to a human adult-
onset form of the disorder known as Kuf’s disease. 
In American Staffordshire terriers, neuronal ceroid 
lipofuscinosis is caused by an R99H mutation in 
exon 2 of the gene encoding arylsulfatase G 
(ARSG), leading to a 75% decrease in sulfatase 
activity. This study, therefore, both identified a new 
gene for consideration in human neuronal ceroid 
lipofuscinosis and provided new information re-
garding sulfatase deficiency and pathogenesis of 
the disease.

Br eed S truc t ur e a nd Gene tic 
Comple x i t y Simplified

A recurring theme in the gene mapping of canine 
diseases is the power of the breed structure (Fig. 
3). To be a registered member of a breed, the dog’s 
ancestors must have been registered members as 
well.26 In 2011, the American Kennel Club (www
.akc.org) recognized 173 distinct dog breeds, with 
European clubs taking the number of established 
breeds to more than 400.24,43

Dog breeds offer the same advantage of reduc-
ing locus heterogeneity that is gained by studying 
humans from geographically isolated countries 
such as Finland or Iceland.29 For any given com-
plex disease, a small number of genes and delete-
rious alleles will dominate the breed,3 much as the 
999del5 BRCA2 mutation does in Icelandic women 
with hereditary breast cancer.44

Epilepsy is a good example, since this disease 
has been difficult to disentangle genetically in 
humans because of indistinct clinical phenotypes 
and a high degree of locus heterogeneity. The 
disease affects 5% of dogs and is reported in 
dozens of breeds. Remitting focal epilepsy in the 
Lagotto Romagnolo breed45 is caused by variants 
in LGI2, a homologue of the human epilepsy LGI1 
gene. In contrast, miniature wire-haired dachs-
hunds have a form of epilepsy reminiscent of the 
progressive myoclonic disease known as Lafora’s 
disease, which in humans is the most severe form 
of teenage-onset epilepsy. The similar disease in 
dachshunds is caused by an unusual expansion of 
a dodecamer repeat46 within the gene encoding 
malin (EPM2B) that modulates gene expression by 
a factor of nearly 900. The presentation of epilepsy 
is expectedly unique in other breeds.47 Thus, one 
way to disentangle complex diseases like epilepsy 
is to study the disorder in different dog breeds.
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Br eed S truc t ur e a nd 
R educing R egions of Link age 

Disequilibr ium

The second way in which breed structure offers 
unique advantages to genetic mapping is that 
when used judiciously, it allows researchers to 
move quickly from linked or associated markers 
to genes. In humans, linkage disequilibrium typ-
ically extends on the order of kilobases, whereas 
within dog breeds it can extend for megabases.5,13 
Long linkage disequilibrium means that although 
only a modest number of single-nucleotide poly-
morphisms (SNPs) are needed for an initial map-
ping study, subsequent identification of the dis-
ease mutation can be difficult. This task is 
facilitated by leveraging interbreed relatedness. 
Haplotypes in the region of interest can be com-
pared in related breeds with the same disorder, 
with the goal of identifying a segment that is 
shared by all affected dogs but absent in those 
lacking the trait (Fig. 4).

Among the many investigators who have dem-
onstrated this principle are Goldstein et al.,48,49 
who had previously mapped a form of canine 
progressive retinal atrophy called progressive rod–
cone degeneration to a 30-mb region. Progressive 
retinal atrophy is analogous to human retinitis 
pigmentosa, for which there are many forms and 

causative genes. Although progressive rod–cone 
degeneration was initially mapped in miniature 
and toy poodles, the disorder appears in more 
than a dozen breeds and is phenotypically simi-
lar to one form of human adult-onset, autosomal 
recessive retinitis pigmentosa. Analysis of addi-
tional SNPs allowed the investigators to reduce 
the disease locus to a 106-kb haplotype that is 
shared by affected dogs from 14 breeds. A muta-
tion in a novel gene was ultimately determined to 
cause the disease.50 Had there not been 14 af-
fected breeds sharing the founder mutation, which 
allowed the haplotype to be significantly reduced, 
only next-generation sequencing could have ulti-
mately localized the disease gene.

Although researchers could have correctly 
guessed a subset of the breeds that shared the 
same mutation at the causative locus for progres-
sive rod–cone degeneration by knowing about 
their shared heritage, common geographic origin, 
or shared morphologic features, in many cases 
the relationship among the breeds is too ancient 
to be obvious. With the use of both cluster analy-
sis51,52 and neighbor-joining trees,23 a clear pic-
ture is emerging regarding how breeds are re-
lated to one another genetically (Fig. 3). This 
type of information highlights groups of breeds 
that probably share common founders (and hence 
the same disease alleles) and facilitates experi-
mental design.

Mor phol o gic Fe at ur es  
a nd Gene tic Va r i ation

The examples discussed thus far have focused on 
disease phenotypes. However, canine morpho-
logic studies have been informative for both dis-
covering new ways of perturbing the genome and 
suggesting candidate genes for related diseases. 
For instance, chondrodysplasia is a fixed trait for 
more than 20 breeds with disproportionately 
short legs recognized by the American Kennel 
Club, including the dachshund, corgi, and basset 
hound (Fig. 5).53

A genomewide association study comparing 
95 dogs from eight chondrodysplastic breeds with 
702 dogs from 64 breeds lacking the trait identi-
fied a single strong association (P = 1.0×10–102) 
with canine chromosome 18. Although this very 
low P value is probably exaggerated because of 
the population structure, such a strong associa-
tion is not unusual when breeds sharing a trait 

Figure 3 (facing page). Neighbor-Joining Tree 
of Domestic Dogs.

On average, 10 to 12 dogs were genotyped for each of 
approximately 80 breeds. Trees were constructed with 
the use of data from each genotyped dog individually 
or by grouping the data from each member of a breed 
together, so each breed is represented as a single data 
entry. Data were also analyzed in two ways: by consid-
ering adjacent 10 single-nucleotide-polymorphism 
(SNP) windows or haplotypes or by considering each 
SNP alone. The two analytic methods provided similar 
results. Panel A shows the relationships among the 
various dog breeds. The color groupings indicate 
breeds that probably share common founders. Panel B 
shows the historical relationship of the breeds with the 
same color coding used in Panel A. In each case, breeds 
that share either common behaviors or morphologic 
traits are grouped together on the basis of DNA analysis, 
indicating that they probably share common ancestors. 
A black dot indicates at least 95% bootstrap support  
(a measure of the likelihood that an evolutionary split 
occurred in a given location in an evolutionary tree)  
after the performance of 1000 replicates. Reprinted 
from vonHoldt et al.23 with permission of the publisher.
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from a common founder are compared with a 
large number of unrelated control breeds. In this 
case, the trait is caused by expression of an fgf4 
retrogene. This retrogene encodes fibroblast 
growth factor 4 in which all fgf4 exons are pres-
ent, but introns and regulatory signals are miss-
ing (Fig. 5). The spliced copy of the gene is lo-
cated a large distance away from the source gene. 
Although such an arrangement is common in 
insects, this was the first report of an expressed 
retrogene that alters a mammalian trait.53 Ex-
pression studies showed that the fgf4 retrogene 
was expressed in the long bones of 4-week-old 
puppies, suggesting that mistimed expression, 
incorrect RNA levels, or mislocalization of the 
retrogene product caused premature closure of 
the growth plates in the long bones of the car-
rier breeds. It will be interesting to see whether 
this gene, or this method of mutating mamma-

lian genomes, turns out to be important in simi-
lar human diseases.

Other canine morphologic traits that include 
such characteristics as body size, leg width, and 
coat color have been mapped.22,28,54-58 Not sur-
prisingly, loci that control both a morphologic 
trait and a disease have been identified. This may 
be a result of strong selection by breeders to 
propagate dogs of a certain appearance, which 
results in piggybacking of disease alleles, or in 
some cases, diseases are associated with the same 
genetic variants that create a morphologic effect. 
This is best illustrated by dermoid sinus, a neural-
tube defect in the ridgeback breed that is caused 
by the same copy-number variant that produces 
the hair ridge characteristic of the Rhodesian 
ridgeback.59

M a pping Multigenic Tr a i t s

When the dog genome sequence was published 
in 2005, Lindblad-Toh et al.5 hypothesized that 
breed structure would enable mapping of simple 
recessive traits in dogs with a genomewide as-
sociation study of no more than 20 cases and con-
trols each. They further reasoned that complex 
traits that are controlled by, for instance, five 
genes could be mapped with 97% certainty on 
the basis of just 100 cases and 100 controls. This 
was a bold prediction, since most genomewide 
association studies of complex human disorders 
require thousands of samples. But the investiga-
tors’ prediction proved to be correct, and many 
genomewide association studies in dogs have suc-
cessfully mapped complex traits on the basis of no 
more than 50,000 SNPs and fewer than 200 dogs.

Recent work by Wilbe et al.60 that identifies 
genes for systemic lupus erythematosus (SLE)–
related disease complex illustrates this point. Nova 
Scotia duck-tolling retrievers have an abnormally 
high rate of autoimmune diseases, including SLE.61 
The breed is descended from a small number of 
founders that survived two major outbreaks of 
canine distemper virus in the early 1900s.62 It 
has been hypothesized that autoimmune disor-
ders develop in these dogs because they have a 
particularly strong or reactive immune system, 
which helped them to survive the distemper out-
breaks. In an analysis of 81 cases and 57 con-
trols in a genomewide association study of 
22,000 SNPs, investigators found five associated 
loci, three of which have already been validat-
ed.60 Candidate genes of particular interest in-

German Shepherd

Collie

Pembroke Welsh Corgi

Cardigan Welsh Corgi

Giant Schnauzer

*

*

*

*

*

Figure 4. Comparing Haplotypes as a Method for Reducing a Region 
of Association for a Given Mutation.

The mutation causing a hypothetical disease is indicated by a yellow star. 
The various breeds with the disease are shown on the left; the chromosome 
responsible for the disease is indicated by a horizontal bar. Within each 
breed, meiotic breakpoints are indicated by the start and finish of the blue 
bar for each breed. When all breeds are considered together, the minimal 
associated region where the mutation must lie is between the red vertical 
lines.
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clude those associated with T-cell activation such 
as PPP3CA, BANK1, and DAPPI.

D o gs a nd C a ncer

Of all the disorders for which dogs are likely to 
inform human health, canine cancer is likely to 
have the greatest effect.63 Cancers are the most 
frequent cause of disease-associated death in 
dogs, and naturally occurring cancers are well 
described in several breeds.3,64,65 Although con-
siderable effort has gone into the study of com-
mon cancers, the dog has also served as a model 
for studies of rare tumors, including histiocytic 
sarcomas, which are highly aggressive, lethal, 
dendritic-cell neoplasms.66 In dogs, two forms 

exist: a localized variant, in which skin and sub-
cutical tumors develop in a leg and metastasize 
to lymph nodes and blood vessels, and a dissem-
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Figure 5. Mapping the Breed-Fixed Trait 
of Chondrodysplasia.

Panel A shows examples of breeds that are associated 
with chondrodysplasia, including the corgi, basset 
hound, and wire-haired dachshund. Panel B shows ob-
served heterozygosity for breeds that are at increased 
risk for chondrodysplasia (red) and those that are not 
at increased risk (black) within the associated 34-kb 
region on canine chromosome 18. The x axis indicates 
the chromosomal position of association, and the 
y axis indicates observed heterozygosity

.
 The red and 

black lines indicate trends and highlight a 24-kb region 
with low heterozygosity in the dogs at risk for chondro-
dysplasia that is absent in dogs that are not at increased 
risk. Gene 1 is a pseudogene, a defective segment of 
DNA that resembles a gene but cannot be transcribed, 
called txndc1 (similar to the gene encoding thioredoxin-
related transmembrane protein 1), and gene 2 marks 
the 3′ end of the gene encoding semaphorin 3C 
(SEMA3C). The green boxes are conserved in both 
sequence and context in all mammals for which data 
are available. A 5-kb insertion (red rectangle), which 
was observed only in dogs with an association with 
chondrodysplasia and was found between the two puta-
tive regulatory elements, contains an fg f4 retrogene. 
LINE denotes long interspersed nuclear element, and 
SINE short interspersed nuclear element. Panel C shows 
expression studies indicating that the fg f4 retrogene 
is expressed in articular cartilage from the distal and 
proximal humerus isolated from a 4-week-old dog with 
chondrodysplasia. The retrogene and source gene are 
distinguished by a single-nucleotide polymorphism, 
which is cut by restriction enzyme BsrB1 in comple-
mentary DNA (cDNA) produced from the source gene, 
resulting in two bands on a 2% agarose gel, but uncut 
in the cDNA from the retrogene that is present in dogs 
with chondrodysplasia, resulting in only one band. MW 
denotes molecular weight marker. The source of con-
trol material is DNA isolated from the testes of a dog 
with chondrodysplasia. Modified from Parker et al.,51 
with the permission of the publisher.
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inated multisystem form, in which tumors affect 
the spleen, liver, and lungs.67 Histiocytic sarcomas 
will develop in approximately 20% of Bernese 
mountain dogs,68 and the condition is invariably 
fatal.69 In humans, similar disorders such as 
Langerhans’-cell histiocytosis have been well 
characterized clinically, but the underlying cause 
is unknown.70

Recently, a genomewide association study for 
histiocytic sarcoma was undertaken in dogs.71 
Because the disorder occurs in so few breeds, 
Bernese mountain dogs from France, the United 
States, and the Netherlands were included, with 
the idea that these independently propagating 
lines would offer the same advantages for reduc-
ing a region of association that distinct, but re-
lated, dog breeds provide.72 For this breed, this 
assumption proved to be true, and two loci were 
identified, one on chromosome 18. Fine mapping 
and sequencing narrowed the locus to a single 
risk-associated haplotype that spans the MTAP 
gene and contains one or more variants that alter 
the expression of the nearby INK4A–ARF–INK4B 
locus but do not affect expression of MTAP itself.

Although 40% of a random sample of Bernese 
mountain dogs in the United States are homozy-
gous for the disease haplotype, histiocytic sar-
coma develops in only about 20% of these dogs. 
However, more than 60% of Bernese mountain 
dogs eventually die of cancer. The disease-asso-
ciated portion of chromosome 11 corresponds to 
human chromosome 9p21, which has been asso-
ciated with several types of cancer.73-75 We have 
hypothesized that multiple distinct cancers in 
Bernese mountain dogs may be related to vari-
ants within the MTAP–CDKN2A region and the 
associated canine locus. Thus, studies of this 
naturally occurring dog model not only illumi-
nate a causative locus but also suggest a biologic 
model for the study of germline variation in this 
important cancer-susceptibility locus.

D o g Br eeds a nd Gene Ther a py

Although I have focused largely on the role of 
dogs in the identification of genes that are asso-
ciated with disease, dogs have also served an im-
portant role in the development of treatments. 
One form of progressive retinal atrophy called 
Leber’s congenital amaurosis type 2 is a disease 

of dogs and humans that is caused by a loss of 
the RPE65 protein owing to mutations in RPE65, 
causing blindness shortly after birth. In a land-
mark study in 2001, Acland et al.76 used a recom-
binant adeno-associated virus carrying wild-type 
RPE65 to restore vision in a dog that was homo-
zygous for the RPE65 mutation. Replication was 
successful,77 and treated dogs maintained stable 
vision for at least 3 years.78 Humans with Leber’s 
congenital amaurosis are now being successfully 
treated for the disorder.79,80 Progressive retinal 
atrophy occurs in more than 100 breeds of dogs, 
suggesting dozens of naturally occurring models 
for additional study. So far, 18 genes for canine 
retinal diseases have been found.81

D o g Gene tics a nd Beh av ior

The canine system is valuable for mapping behav-
iors that are specific to both breed82 and species.23 
Abnormal behaviors, including separation anxiety, 
dominance aggression, and obsessive–compulsive 
disorder, are most amenable to genetic studies.83 
Partial success has been achieved with obsessive–
compulsive disorder in bull terriers and Doberman 
pinschers.84,85 In Dobermans, the disease presents 
as flank or blanket sucking and was recently 
mapped to a 1.7-Mb region of chromosome 7 near 
the CDH2 gene. CDH2 mediates synaptic activity-
regulated neuronal adhesion, but to date no func-
tional studies have illuminated these findings and 
no mutation has been reported.85

Summ a r y

What we most wish to understand about dog 
health is the very same thing we wish to know 
about ourselves. When will we, or they, get sick? 
How is the illness best treated? And what is the 
likely outcome? Each half of a pet–human pair 
wants to know what to expect from the other end 
of the leash and how to prolong the relationship. 
Finally, as the end of life approaches, we seek to 
make both our canine companions and ourselves 
comfortable, settled in the knowledge that a full 
life has been achieved. When considered in that 
frame, we are not so different from our canine 
companions. As the scientific advances coalesce, 
joining us ever closer to the one family member 
we actually get to choose, it is worth bearing in 
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mind that though our methods may be different, 
our goals are the same: a healthy life well spent 
in the best of company.

Disclosure forms provided by the author are available with the 
full text of this article at NEJM.org.
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