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Cellular Biology

Heparin Disrupts the CXCR4/SDF-1 Axis and Impairs the
Functional Capacity of Bone Marrow–Derived Mononuclear

Cells Used for Cardiovascular Repair
Florian H. Seeger, Tina Rasper, Ariane Fischer, Marion Muhly-Reinholz, Eduard Hergenreider,

David M. Leistner, Katharina Sommer, Yosif Manavski, Reinhard Henschler, Emmanouil Chavakis,
Birgit Assmus, Andreas M. Zeiher,* Stefanie Dimmeler*

Rationale: Cell therapy is a promising option for the treatment of acute or chronic myocardial ischemia. The
intracoronary infusion of cells imposes the potential risk of cell clotting, which may be prevented by the addition
of anticoagulants. However, a comprehensive analysis of the effects of anticoagulants on the function of the cells
is missing.

Objective: Here, we investigated the effects of heparin and the thrombin inhibitor bivalirudin on bone
marrow–derived mononuclear cell (BMC) functional activity and homing capacity.

Methods and Results: Heparin, but not bivalirudin profoundly and dose-dependently inhibited basal and
stromal cell–derived factor 1 (SDF-1)–induced BMC migration. Incubation of BMCs with 20 U/mL heparin for
30 minutes abrogated SDF-1–induced BMC invasion (16�8% of control; P<0.01), whereas no effects on
apoptosis or colony formation were observed (80�33% and 100�44% of control, respectively). Pretreatment of
BMCs with heparin significantly reduced the homing of the injected cells in a mouse ear-wound model (69�10%
of control; P<0.05). In contrast, bivalirudin did not inhibit in vivo homing of BMCs. Mechanistically, heparin
binds to both, the chemoattractant SDF-1 and its receptor, chemokine receptor 4 (CXCR4), blocking CXCR4
internalization as well as SDF-1/CXCR4 signaling after SDF-1 stimulation.

Conclusions: Heparin blocks SDF-1/CXCR4 signaling by binding to the ligand as well as the receptor, thereby
interfering with migration and homing of BMCs. In contrast, the thrombin inhibitor bivalirudin did not interfere
with BMC homing or SDF-1/CXCR4 signaling. These findings suggest that bivalirudin but not heparin
might be recommended as an anticoagulant for intracoronary infusion of BMCs for cell therapy after
cardiac ischemia. (Circ Res. 2012;111:854-862.)

Key Words: cell therapy � bone marrow cells � myocardial infarction � heparin � bivalirudin � cell migration
� cell transplantation

Postinfarction heart failure remains a challenge in modern
cardiology despite optimal treatment with early reperfu-

sion and medical therapy.1,2 Cell therapy with autologous or
allogeneic bone marrow–derived or tissue-resident stem/
progenitor cells, eg, from adipose or cardiac tissue, has
emerged as a promising treatment option for patients with
acute or chronic ischemia and heart failure.3 Cell therapy with
proangiogenic cells, such as bone marrow–derived mononu-
clear cells (BMCs), increased left ventricular ejection fraction
and prevented left ventricular remodeling in some but not all

clinical trials.4–8 Specifically, when intracoronary delivery of
cells was used for cell therapy in patients with acute myo-
cardial infarction, the therapeutic benefit of cell therapy was
found to critically depend on the appropriate homing of the
injected cells. Homing in acute ischemia is mainly guided by
the chemokine SDF-1 (stromal cell–derived factor-1, also
known as CXCL12) and its receptor, chemokine receptor 4
(CXCR4).9 SDF-1 is released in response to hypoxia and
recruits CXCR4-expressing proangiogenic cells to sites of
ischemia.10–13 Blocking the CXCR4 receptor with neutraliz-
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ing antibodies or injection of CXCR4-negative BMCs leads
to a significantly reduced recovery of neovascularization in
mice after hindlimb ischemia.12,14 The capacity of the injected
cells to migrate ex vivo in response to SDF-1 additionally
predicted the neovascularization improvement and infarct
size reduction in vivo.15,16

In This Issue, see p 815
Editorial, see p 819

Intracoronary infusion is currently the preferred cell deliv-
ery strategy in patients with acute myocardial infarction.7,17–19

Even though this method appears to be safe, early studies
reported reduced blood flow or even occluded arteries after
intracoronary application of proangiogenic cells, which might
be caused by cell clotting.20–22 Therefore, several groups
added anticoagulant glycosaminoglycans such as heparin to
the injected cells. Heparin sulfate is well known for its high
binding activity to proteins and receptors and was previously
shown to directly bind to the chemoattractant SDF-1 through
a typical consensus sequence for heparin recognition.23,24

Clinically relevant concentrations of heparin negatively af-
fected SDF-1–induced chemotaxis and inhibited CXCR4
receptor ligation in tumor cell lines.24–26 Moreover, treatment
of mice with heparin significantly reduced the number of
metastases by blocking CXCR4-dependent invasion of tumor
cells into the bloodstream.25 However, the influence of
heparin and other anticoagulants on the migration and hom-
ing function of cells used for cardiac cell therapy is unknown.

Therefore, we performed a detailed analysis of the effects
of heparin on BMC homing functions in vitro and in vivo. In
addition, we tested other anticoagulants, such as the direct
thrombin inhibitor bivalirudin, which is a short, synthetic
peptide without many of the limitations of heparin, such as its
unspecific binding ability.27,28

We show that heparin, when added in clinically relevant
concentrations, significantly reduces BMC functionality by
interacting with the CXCR4/SDF-1 axis and thereby abro-
gates the positive effects of this chemokine. In contrast,
bivalirudin does not affect BMC functionality in vivo and in
vitro.

Methods
Isolation of BMCs
Bone marrow aspirates were obtained from healthy volunteers
without any evidence of coronary artery disease in their history or
physical examination. The Ethics Review Board of the Hospital of
the Johann Wolfgang Goethe University in Frankfurt, Germany,
approved the protocol, and the study was conducted in accordance
with the Declaration of Helsinki. Written informed consent was
obtained from each volunteer. For several experiments, BMCs were
obtained from patients with ischemic cardiomyopathy undergoing
intracoronary infusion of BMCs within an ongoing registry, with the
same inclusion and exclusion criteria as the previously published
randomized TOPCARE-CHD trial (Transplantation of Progenitor
Cells and Regeneration Enhancement in Coronary Heart Disease).29

BMCs were isolated as described previously.14 Briefly, bone
marrow aspirates were diluted with PBS, and mononuclear cells
were isolated by density gradient centrifugation with Ficoll (Bio-
chrom AG; 800g, 20 minutes, without brake). The mononuclear cells
were washed 3 times with 50 mL of PBS (800g), counted, and used
for the experiments.

Fluorescence-Activated Cell Sorter Analysis
and Immunostaining
For internalization experiments, BMCs were preincubated with
heparin (Ratiopharm) for 2 hours at 37°C. Next, cells were stained
with a CXCR4 antibody (clone 1D9; BD) for 60 minutes at 4°C.
Afterwards, BMCs were incubated at 37°C with SDF-1 (100 ng/mL;
R&D Systems) to stimulate internalization. To detect internalized
CXCR4, the surface-bound antibodies were stripped off with an
acidic buffer (50 mmol/L glycine plus 100 mmol/L NaCL, pH 2.5)
for 2.5 minutes, followed by extensive washing. Then, cells were
analyzed by fluorescence-activated cell sorting (FACS; Becton
Dickinson, FACS Canto II). For immunostaining, the CXCR4
antibody (1D9; BD) was labeled with Alexa Fluor 555 (Invitrogen),
the cell membrane was stained with wheat germ agglutinin labeled
with Alexa Fluor 488, and cell nuclei were stained with Hoechst
33342 (AnaSpec Inc). Confocal microscopy analysis was performed
with a Zeiss LSM 510 Meta microscope.

Colony-Forming Unit Assay
BMCs (1�105 per dish) were seeded in methylcellulose plates
(Methocult GF H4534; StemCell). The plates were studied under
phase-contrast microscopy, and colony-forming units (colonies �50
cells) were counted after 14 days of incubation at 37°C. Colony-
forming units were examined in duplicate.

Assessment of Invasion Capacity of BMCs
A total of 1�106 BMCs were resuspended in 250 �L of X-VIVO 15
medium and placed in the upper chamber of a modified Boyden
chamber filled with Matrigel (BioCoat invasion assay, 8-�m pore
size; Becton Dickinson). The chamber was then placed in a 24-well
culture dish that contained 500 �L of X-VIVO 15 medium. For some
experiments, 100 ng/mL SDF-1 was added to the lower chamber.
After 24 hours of incubation at 37°C, transmigrated cells were
counted. Invasion assays were run in duplicate.

Ear-Wound Model
Fifteen female SHK-1 mice, weighing 20 to 30 g and aged 8 to 12
weeks, were obtained from Charles River Laboratories (Sulzfeld,
Germany). The animals were anesthetized with an intraperitoneal
injection of ketamine (100 mg/kg body weight) and xylazine
hydrochloride (10 mg/kg body weight). After disinfection of the ears,
the animals were placed on a specially designed acrylic glass
platform with the ears stretched out by application of 3 permanent
loops (9-0, nylon). A standardized circular wound (2.25 mm in
diameter, 1.25 mm in depth) was made on the dorsum of the ears
with a specially designed punch. The wounds were positioned
between the ears’ anterior and medial principal neurovascular
bundles. After the punch incision was performed, a full-thickness
layer of skin was dissected down to the underlying cartilage layer by
use of a precise microsurgical technique. BMCs were preincubated
for 2 hours under different conditions (control, heparin, bivalirudin),
then stained with carboxyfluorescein succinimidyl ester (CFSE;
Invitrogen) and injected into the tail vein in 250 �L of PBS. The
mice were placed under a microscope, and the periwound area was
monitored for homing BMCs for 10 minutes. Homed cells were
counted by 2 blinded investigators.

Acute Myocardial Infarction Model
Acute myocardial infarction was induced in female SHK-1 mice
weighing 20 to 30 g and aged 8 to 12 weeks (Charles River
Laboratories, Sulzfeld, Germany) by permanent ligation of the left

Non-standard Abbreviations and Acronyms

BMC bone marrow–derived mononuclear cell

SDF-1 stromal cell-derived factor-1
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anterior descending artery under mechanical ventilation, with anes-
thesia with isoflurane and analgesia with buprenorphine (0.1 mg/kg),
and by infiltration of the intercostal/incision area with bupivacaine.
The following day, BMCs were preincubated for 2 hours under
different conditions (control, heparin, bivalirudin), then stained with
CFSE violet (Invitrogen) and injected into the tail vein in 200 �L of
PBS. After 2 hours, mice were killed and hearts were harvested.
Frozen sections were cut with a cryotome with 10 �m thickness.
Sections were analyzed under a fluorescence microscope, and homed
BMCs were counted by a blinded investigator.

Akt ELISA
BMCs were incubated with heparin or bivalirudin in the concentra-
tions specified in endothelial basal medium (Lonza). Then, BMCs
were stimulated with SDF-1 for 2.5 minutes (100 ng/mL). The
phosphatidylinositol 3-kinase inhibitor Ly294002 was used as a
negative control for Akt phosphorylation. Cells were lysed with the
Akt-ELISA lysis buffer, and the ELISA was performed with com-
mercially available Akt1 ELISA kits (Cell Signaling Technology)

that detect total Akt1 and phosphorylated Akt1 (phospho-Akt1;
Ser473). Absorbance was measured with a plate reader (Synergy HT;
Bio-Tek Instruments). Data are shown as a ratio of phospho-Akt to
total Akt.

Heparin-Binding ELISA
Heparin (5000 U/mL) or BSA (1 �g/mL) was incubated on a 96-well
immunoplate (Nunc) for 3 hours at 37°C in coating buffer
(50 mmol/L Na2CO3, pH 9.6). After the coating buffer was removed,
the wells were incubated with a CXCR4–glutathione S-transferase
(GST) fusion protein (1 �g/mL; Abnova) overnight at 4°C followed
by an anti-GST horseradish peroxidase (HRP) antibody (Abcam).
After 3 washing steps, HRP was detected by TMB solution (Pierce),
and absorbance was measured with a plate reader (Synergy HT;
BioTek Instruments).

CXCR4-Binding ELISA
CXCR4-GST protein (1 �g/mL; Abnova) was incubated on a
96-well immunoplate (Nunc) for 18 hours at 4°C in coating buffer
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Figure 1. Heparin impairs functional capacity of bone marrow–derived mononuclear cells (BMCs). A, Stromal cell–derived
factor-1 (SDF-1)–stimulated invasion capacity of 1�106 total BMCs. BMCs were preincubated with heparin or bivalirudin in the speci-
fied concentrations (n�3 donors; each invasion was measured in duplicate; data are shown as mean�SEM; *P�0.05 vs control). B,
Basal and SDF-1–stimulated invasion capacity of 1�106 total BMCs. BMCs were preincubated with 2 U/mL heparin (n�3 donors; each
invasion was measured in duplicate; data are shown as mean�SEM). C, SDF-1–stimulated invasion capacity of 1�106 total BMCs
derived from patients with coronary artery disease. BMCs were preincubated with heparin or bivalirudin in the specified concentrations
(n�3 donors; each invasion was measured in duplicate; data are shown as mean�SEM). D, SDF-1–stimulated invasion capacity of
1�106 total BMCs. BMCs were preincubated with heparin (20 U/mL) or bivalirudin (15 �g/mL) for 30 minutes, followed by washing with
PBS (n�3 donors; each invasion was measured in duplicate; data are shown as mean�SEM). E, Number of granulocyte macrophage
colony-forming units (CFU) out of 1�105 BMCs preincubated with heparin or bivalirudin (n�3 donors; each assay was measured in
duplicate; data are shown as mean�SEM). F, BMCs were incubated with heparin (20 U/mL) or bivalirudin (15 �g/mL) for 24 hours,
stained with annexin/7-AAD, and analyzed by fluorescence-activated cell sorting (n�3 donors; data are shown as mean�SEM).
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(50 mmol/L Na2CO3, pH 9.6), followed by blocking (5% BSA in
PBS). After washing (PBS/0.1% Tween), biotinylated SDF-1 (R&D
Systems) was added for 2 hours at 4°C. For some experiments,
biotinylated SDF-1 was preincubated with heparin for 1 hour at room
temperature; in other experiments, heparin was added to the CXCR4
coating. Detection was performed after incubation with a streptavi-
din HRP antibody (Thermo Scientific) and TMB solution, and
absorbance was measured with a plate reader (Synergy HT).

Statistical Analysis
Unless stated otherwise, data are shown as mean�SEM. Statistical
comparisons were made by the 2-sided t test or the nonparametric
Mann-Whitney U test. Statistical significance was assumed at a
value of P�0.05.

Results
Heparin Impairs Migration and Homing of BMCs
BMCs were incubated with heparin or the thrombin inhibitor
bivalirudin in increasing, pharmacologically relevant concen-
trations, and invasion was measured in a modified Boyden
chamber. As shown in Figure 1, heparin profoundly and
dose-dependently inhibited SDF-1–induced BMC invasion
(Figure 1A), whereas the thrombin inhibitor bivalirudin did

not affect BMC invasion. In addition, the basal invasion
capacity of the cells was significantly inhibited after incuba-
tion with heparin (Figure 1B). Similar effects were detected
when BMCs isolated from patients with chronic ischemic
heart disease were used for the experiments (Figure 1C).
Interestingly, the addition of 20 U/mL heparin to BMCs for
just 30 minutes followed by extensive washing before addi-
tion to the Boyden chamber also significantly reduced the
SDF-1–induced BMC invasion capacity (Figure 1D). To
exclude apoptotic effects, annexin/7-AAD was examined by
FACS analysis. There was no significant difference in apo-
ptosis and necrosis between BMCs preincubated with heparin
or bivalirudin and untreated control cells (Figure 1F). Like-
wise, the colony-forming activity was not affected by heparin
or bivalirudin (Figure 1E).

To address whether heparin affects BMC homing in vivo,
BMCs were pretreated with heparin for 2 hours, washed with
PBS, fluorescently labeled, and intravenously injected in
mice with an ear wound, which allowed for intravital assess-
ment of BMC homing. Preincubation of BMCs with heparin
significantly reduced homing capacity compared with control
cells (Figure 2). Importantly, bivalirudin did not inhibit
homing of BMCs in vivo (Figure 2). Furthermore, heparin
reduced in vivo homing in infarcted mouse hearts to a similar
extent (49.6�27.4% of control). Taken together, these data
demonstrate that heparin but not bivalirudin impairs the
SDF-1–induced invasion of BMCs in vitro, and preincubation
with heparin significantly reduces homing of the injected
cells in vivo.

Heparin Alters CXCR4 Internalization
The SDF-1/CXCR4 axis is essential for invasion and for in
vivo engraftment of BMCs. Therefore, CXCR4 surface ex-
pression was measured by FACS analysis. Interestingly,
heparin significantly increased mean CXCR4 surface expres-
sion on BMCs after 2 hours and after 24 hours (Figure 3). On
binding to SDF-1, the CXCR4 receptor is internalized to
activate the intracellular signaling pathways, whereas the
absence of a ligand leads to an increase in CXCR4 surface
expression. To address the kinetics of CXCR4 receptor
cycling, we performed internalization experiments as shown
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in Figure 4A. Indeed, the surface CXCR4 signal was signif-
icantly reduced after SDF-1 stimulation in control BMCs,
whereas heparin abolished this effect (Figure 4). Consis-
tently, the intracellular CXCR4 signal significantly increased
after SDF-1 stimulation in control but not heparin-treated
BMCs. In contrast, bivalirudin did not alter CXCR4 expres-
sion or internalization (data not shown). These findings were
confirmed by immunohistochemistry, as shown in Figure 4C.
Together, these results demonstrate that heparin prevents
CXCR4 internalization after SDF-1 stimulation.

Heparin Inhibits SDF-1 Signaling
To verify our results and to demonstrate that the defective
CXCR4 internalization caused by heparin interferes with
intracellular CXCR4 signaling, we measured the activation of
Akt, a known downstream signal of the CXCR4 receptor.30,31

Indeed, heparin significantly reduced SDF-1–induced Akt
phosphorylation to 57�10% of untreated cells (Figure 5),

whereas bivalirudin did not affect Akt phosphorylation (Fig-
ure 5), which indicates a disruption of the CXCR4/SDF-1
signaling axis by heparin but not by bivalirudin.

CXCR4/SDF-1 Interaction
Having demonstrated that heparin inhibits CXCR4 internal-
ization and signaling, we addressed the underlying mecha-
nisms. As heparin is well known for its binding activities to
both growth factors and receptors,23,24,28,32–34 we performed
binding studies with recombinant SDF-1 and CXCR4 in vitro.
First, we examined whether the CXCR4 receptor binds
directly to heparin. Plates were coated with heparin or BSA
(as control) before the addition of recombinant GST-CXCR4
fusion protein. After extensive washing, the GST-CXCR4
protein was detected by HRP-conjugated anti-GST antibod-
ies. As shown in Figure 6, binding of the GST-CXCR4 fusion
protein was significantly higher in heparin-coated plates than
in BSA-coated plates. The intensity of the signal in heparin-
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coated plates was comparable to GST-CXCR4 coated plates,
which were used as a positive control (Figure 6), which
indicates the efficient binding of heparin to CXCR4.

Next, we analyzed whether heparin interferes with binding
of SDF-1 to the CXCR4 receptor. We coated plates with
recombinant CXCR4 and then added biotinylated recombi-
nant SDF-1. The biotinylated SDF-1 was detected by HRP-
conjugated streptavidin. As expected, SDF-1 bound to
CXCR4 (Figure 7); however, when SDF-1 was preincubated
with heparin, no binding to CXCR4 was detected (Figure 7).
Interestingly, when heparin was added directly to the
CXCR4-coated plates, SDF-1 was still able to bind to
CXCR4, which indicates that the binding of heparin to
the CXCR4 receptor does not directly inhibit the binding of
SDF-1 to the CXCR4 receptor.

These data show that heparin binds to SDF-1 and to
CXCR4 and thereby inactivates the functional activity of the
SDF-1/CXCR4 axis.

Discussion
The present study demonstrates that the glycosaminoglycan
heparin in pharmacologically relevant concentrations impairs
the invasion and homing capacity of BMCs used for clinical
cell therapy in vitro and in vivo. Specifically, heparin
interferes with the SDF-1/CXCR4 axis, which is essential for
migration and in vivo engraftment of intravascularly admin-
istered BMCs. The inhibition of SDF-1 responses by heparin
is mediated by an inhibition of CXCR4 receptor internaliza-
tion, which blocks CXCR4 downstream signaling (Figure 8).
The inhibition of CXCR4 internalization might be a conse-
quence of direct binding of heparin to SDF-1, which inhibits
SDF-1–dependent CXCR4 activation. Indeed, previous bio-
chemical studies documented a direct binding of heparin to
SDF-1, which prevented the chemoattractive activity of
SDF-1 in leukemia cells,23,24 consistent with our in vitro
binding studies. Recently, it was shown that heparin but not
bivalirudin affects the levels of circulating sFLT1 (soluble
fms-like tyrosine kinase-1), placental growth factor, and
vascular endothelial growth factor during percutaneous cor-
onary intervention procedures.28 Moreover, we demonstrate
that heparin binds not only to SDF-1 but also directly to
the CXCR4 receptor. The direct binding of heparin to the
CXCR4 receptor did not prevent interaction of SDF-1 and
CXCR4 but likely interfered with receptor internalization.
The direct binding of heparin to CXCR4 might explain why
a brief preincubation of BMCs with heparin, followed by
several washing steps, still led to impairment of the SDF-1
response, although heparin was not added to the migration
assays. Pretreatment of BMCs with heparin also reduced the
in vivo homing of injected BMCs in the ear-wound model
and inhibited homing in infarcted mouse hearts. Although we
cannot formally prove that this effect is mediated by the
interferences with the SDF-1/CXCR4 axis, various experi-
mental studies have demonstrated that SDF-1 and CXCR4 are
essential for homing of injected proangiogenic cells and
BMCs to ischemic and injured tissue.10–13 Even half-maximal
inhibition of CXCR4 expression by use of CXCR4�/� cells
resulted in severe impairment of neovascularization improve-
ment mediated by the injected cells.35 Moreover, systemic
injection of unfractionated heparin and low-molecular-weight
heparin inhibits CXCR4-dependent migration of cancer cells
and reduces the number of metastases.25

Given that recent data demonstrate a direct relationship
between the number of cells retained acutely and the recovery
of cardiac function after ischemia in animal models,36 the
finding of the present study that heparin interferes with the in
vivo homing of BMCs might be important for the interpre-
tation of existing clinical trial data and the design of future
studies. Although meta-analysis of all studies demonstrated
that BMC therapy significantly improved the left ventricular
ejection fraction of patients after acute myocardial infarc-
tion,4–6 clinical trials showed variable results. In most of the
clinical trials, BMCs were isolated individually by density
gradient centrifugation (Ficoll); however, the details of the
further handling of the cells varied among the studies. Both,
the choice of buffer (ranging from plain saline to PBS to
various cell culture media) and the supplements (serum,
plasma) may interfere with cell functionality.37 Interestingly,
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Figure 5. Heparin impairs chemokine receptor 4 (CXCR4)
downstream signaling. Bone marrow–derived mononuclear
cells were incubated with heparin/bivalirudin overnight, followed
by stromal cell–derived factor-1 (SDF-1) stimulation. Next, Akt1
ELISAs (total and phospho-Akt1) were performed. The figure
shows the ratio of phospho-Akt1 to total Akt1 (n�4 donors;
data are shown as mean�SEM).
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several studies added heparin to the BMCs in concentrations
that far exceeded the minimal dose of 0.05 U/mL that
inhibited the SDF-1–induced invasion capacity of BMCs in
the present study (Autologous Stem Cell Transplantation in
Acute Myocardial Infarction [ASTAMI] trial, 5 U/mL hepa-
rin; Multicenter Randomized Trial of Intracoronary Infusion
of Autologous Mononuclear Bone Marrow Cells or Periph-
eral Mononuclear Blood Cells After Primary Percutaneous
Coronary Intervention [HEBE] trial: 20 U/mL heparin18,19).
Although the details of the protocols (such as the dosage of
heparin or the addition of serum, which may partially block
the heparin effects) might influence the effects on BMC
function, one may speculate that the lack of effects seen in
some studies might be attributed to the conditions of cell
storage.

Furthermore, it is unclear whether heparin or other antico-
agulants were systemically administered to the treated pa-
tients during cell administration, because this information
was not given in all of the published trials. Heparin is a
state-of-the art therapy for patients undergoing coronary
angiography and has shown clinical benefits in patients with

acute coronary syndrome.38 However, it is unclear whether
systemic administration interferes with homing of adminis-
tered BMCs or even with homing of endogenous circulating
progenitor cells. The findings in tumor-bearing mice suggest
that systemically administered heparin indeed effectively
blocks CXCR4 signaling,25,26 and one may speculate that the
use of heparin might have limited the effects of strategies to
augment endogenous stem cell mobilization, eg, by
granulocyte–colony-stimulating factor.4 Further studies are
warranted to determine whether heparin may interfere with
homing of applied or endogenously mobilized cells to the
injured myocardium. Importantly, because the effects of
heparin can be ameliorated by excessive serum in vitro (data
not shown), the concentration of heparin in relation to serum
should be taken into consideration.

Finally, the data of the present study demonstrate that an
alternative anticoagulant, bivalirudin, does not interfere with
SDF-1/CXCR4 signaling and does not inhibit homing of
injected BMCs. Bivalirudin is approved as an anticoagulant
for percutaneous interventions and was shown to be superior
compared to heparin in invasively treated patients with acute
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Figure 7. Stromal cell–derived factor-1
(SDF-1) binds to the chemokine receptor
4 (CXCR4)/heparin complex. Ninety-six–
well plates were coated with recombinant
CXCR4 protein. Biotinylated SDF-1 was
added to examine the CXCR4–SDF-1
interaction. A horseradish peroxidase–con-
jugated streptavidin antibody was used to
visualize absorbance, measured by a plate
reader. In some of the experiments, hepa-
rin was preincubated with SDF-1; in other
experiments, heparin was added to the
CXCR4 coating (n�3; data are shown as
mean�SEM).

Figure 8. Proposed mechanism. Under normal
conditions, stromal cell–derived factor-1 (SDF-1)
binds to its receptor, chemokine receptor 4
(CXCR4). The complex internalizes and initiates
downstream signaling. Heparin can bind to the
chemokine SDF-1, building a heparin–SDF-1 com-
plex. Heparin-bound SDF-1 demonstrates reduced
CXCR4 binding ability and thereby impaired down-
stream signaling. Moreover, heparin can bind
directly to the CXCR4 receptor. SDF-1 can still
bind to the CXCR4 heparin complex; however, this
complex demonstrates reduced internalization and
impaired downstream signaling after SDF-1
stimulation.
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myocardial infarction.39,40 Therefore, one might consider
using bivalirudin instead of heparin for cell storage and
potentially also for systemic anticoagulant treatment of pa-
tients undergoing intracoronary cell therapy.

In summary, heparin but not bivalirudin impairs the func-
tionality of BMCs in vitro and in vivo by at least 2
mechanisms, including the binding of SDF-1, thereby pre-
venting CXCR4 receptor activation, and binding to the
CXCR4 receptor. Both mechanisms impair the SDF-1/
CXCR4 signaling pathway (Figure 8) and thereby reduce the
homing of cells for neovascularization improvement and
cardiac repair after ischemia. Therefore, an alternative anti-
coagulant such as the thrombin-inhibitor bivalirudin might be
used for clinical cell therapy.
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Novelty and Significance

What Is Known?

● Cell therapy with bone marrow–derived mononuclear cells (BMCs)
improved recovery after acute ischemia in experimental and
clinical studies. Isolation and storage protocols influence the
functional activity of BMCs used for cell therapy.

● The glycosaminoglycan heparin, which reduces tumor cell invasion,
is routinely added to cell preparations in clinical studies to reduce
clotting of the cell suspension.

What Information Does This Article Contribute?

● Heparin impairs the basal and SDF-1–induced migration capacity
of BMCs in vitro and the homing of cells to ischemic tissue in
vivo.

● Heparin binds to SDF-1 and its receptor CXCR4, thereby blocking
the CXCR4 –SDF-1 signaling axis crucial for cell homing and
retention.

● Bivalirudin does not interfere with SDF-1/CXCR4 signaling or homing
of BMCs and might be an alternative anticoagulant during cell
preparation.

Data from recent meta-analyses suggest that BMC therapy im-
proves cardiac function and survival of patients with acute myo-
cardial infarction. However, results of individual studies have been
heterogeneous, perhaps in part because varying protocols were
used for cell isolation and storage. Here, we demonstrate that
heparin in clinically relevant concentrations inhibits functional
activity of BMCs in vitro, and pretreatment of BMCs impairs homing
in vivo. Mechanistically, we show that heparin directly interacts with
CXCR4 and SDF-1, which are essential for in vivo homing of BMCs.
In contrast, the direct thrombin inhibitor bivalirudin does not affect
BMC functionality in vivo and in vitro. Therefore, bivalirudin might be
a superior alternative anticoagulant for heparin for use in cell
preparations for intracoronary cell therapy.
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