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Integrative Physiology

Loss of Angiotensin-Converting Enzyme-2 Exacerbates
Diabetic Cardiovascular Complications and Leads to

Systolic and Vascular Dysfunction
A Critical Role of the Angiotensin II/AT1 Receptor Axis

Vaibhav B. Patel, Sreedhar Bodiga, Ratnadeep Basu, Subhash K. Das, Wang Wang, Zuocheng Wang,
Jennifer Lo, Maria B. Grant, JiuChang Zhong, Zamaneh Kassiri, Gavin Y. Oudit

Rationale: Diabetic cardiovascular complications are reaching epidemic proportions. Angiotensin-converting
enzyme-2 (ACE2) is a negative regulator of the renin-angiotensin system. We hypothesize that loss of ACE2
exacerbates cardiovascular complications induced by diabetes.

Objective: To define the role of ACE2 in diabetic cardiovascular complications.
Methods and Results: We used the well-validated Akita mice, a model of human diabetes, and generated

double-mutant mice using the ACE2 knockout (KO) mice (Akita/ACE2�/y). Diabetic state was associated with
increased ACE2 in Akita mice, whereas additional loss of ACE2 in these mice leads to increased plasma and tissue
angiotensin II levels, resulting in systolic dysfunction on a background of impaired diastolic function. Downregulation
of SERCA2 and lipotoxicity were equivalent in Akita and Akita/ACE2KO hearts and are likely mediators of the
diastolic dysfunction. However, greater activation of protein kinase C and loss of Akt and endothelial nitric oxide
synthase phosphorylation occurred in the Akita/ACE2KO hearts. Systolic dysfunction in Akita/ACE2KO mice was linked
to enhanced activation of NADPH oxidase and metalloproteinases, resulting in greater oxidative stress and degradation of
the extracellular matrix. Impaired flow-mediated dilation in vivo correlated with increased vascular oxidative stress in
Akita/ACE2KO mice. Treatment with the AT1 receptor blocker, irbesartan rescued the systolic dysfunction, normalized
altered signaling pathways, flow-mediated dilation, and the increased oxidative stress in the cardiovascular system.

Conclusions: Loss of ACE2 disrupts the balance of the renin-angiotensin system in a diabetic state and leads
to an angiotensin II/AT1 receptor-dependent systolic dysfunction and impaired vascular function. Our study
demonstrates that ACE2 serves as a protective mechanism against diabetes-induced cardiovascular
complications. (Circ Res. 2012;110:1322-1335.)

Key Words: angiotensin II � angiotensin-converting enzyme-2 � AT1 receptor � diabetes
� renin angiotensin system

Diabetes mellitus results in severe cardiovascular compli-
cations, and heart disease and failure remain the major

causes of death in patients with diabetes.1–5 Given the
increasing global tide of obesity and diabetes, the clinical
burden of diabetes-induced cardiovascular disease is reaching
epidemic proportions. Diabetic cardiomyopathy refers to
ventricular dysfunction that occurs in the absence of any
changes in blood pressure and coronary artery disease, with
phenotypic features such as cardiomyocyte apoptosis, cardiac
hypertrophy, myocardial fibrosis, and interstitial inflamma-

tion.4,6,7 Several key mechanisms have been proposed and
tested to explain diabetic myocardial dysfunction, some of
which include increased oxidative stress, impaired calcium
homeostasis, upregulation of the renin-angiotensin system
(RAS), lipotoxicity, and mitochondrial dysfunction.4,6

Editorial, see p 1270
In This Issue, see p 1265

Activation of the RAS plays a key role in the progression of
diabetic complications and AT1 receptor blockers have reduced
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these complications.8 –11 Angiotensin-converting enzyme-2
(ACE2) is a carboxypeptidase that metabolizes angiotensin II
(Ang II) to yield angiotensin 1 to 7 (Ang 1–7), essentially
negatively regulating the RAS.12–15 We hypothesized that loss of
ACE2 accelerates diabetic injury in the cardiovascular system.
We investigated cardiac and vascular structure and function,
Ang II metabolism, signaling, and tissue reactive oxygen species
generation in insulin-deficient diabetic Akita mice in response to
genetic ablation of ACE2. In this study, we demonstrate that loss
of ACE2 mediates development of systolic dysfunction and
impaired vascular function in Akita mice. We identified aug-
mented superoxide production, activation of the extracellular
matrix (ECM)-degrading metalloproteinases, and differential
signaling as the underlying mechanisms in this model of diabetic
cardiovascular injury.

Methods
Experimental Animals and Protocol
C57BL/6J wild-type (WT) and diabetic heterozygous Akita
(Ins2WT/C96Y) and db/db mice were purchased from The Jackson
Laboratory (Bar Harbor, ME). Male Akita mice were bred with
female WT mice at the University of Alberta animal facility.
Similarly, male heterozygous Akita mice were crossed with female
ACE2�/� mutant mice (ACE2KO) to obtain Akita/ACE2KO
(Ins2WT/C96Y/ACE2�/y) double mutants (Detailed Methods are pro-
vided in the Online Supplement.). Throughout the period of study,
animals were provided free access to water and standard 18% protein
rodent chow (Harlan Teklad). A subgroup of Akita/ACE2KO mice
also was treated with irbesartan, an AT1 receptor blocker (50
mg/kg�1/d�1) or Ang 1–7 (24 �g/kg/h; Bachem) for 1 month
starting at 5 months of age. A subgroup of Akita mice was also
treated with irbesartan (50 mg/kg�1/d�1) for 1 month starting at 5
months of age. The use of animals in this study conforms to the Care
and Use of Laboratory Animals published by the United States
National Institutes of Health (NIH Publication 85-23, revised 1996)
and to the guidelines of the Canadian Council on Animal Care.

Echocardiography and Tissue Doppler Imaging
Transthoracic echocardiography was performed noninvasively to
assess systolic and diastolic functions as described previously using
a Vevo 770 high-resolution imaging system equipped with a 30-MHz
transducer (RMV-707B; VisualSonics).13,16

Tail-Cuff Systolic Blood Pressure Measurements
Systolic blood pressure of each mouse was measured by the tail-cuff
method with an IITC blood pressure monitoring system (IITC Life
Science) as previously described.13

Assessment of Flow-Mediated Vasodilation
Six-month-old male WT, Akita, ACE2KO, and Akita/ACE2KO and
irbesartan-treated Akita/ACE2KO mice were anesthetized with isoflu-
rane (2% induction and 1% maintenance), and body temperature was
maintained at 36.9°C to 37°C. A 40-MHz transducer (RMV-704; Visual
Sonics) was used to visualize the left femoral artery. The left femoral
artery was identified on the basis of its characteristic flow pattern.17

Doppler flow measurements from longitudinal sections of the femoral
artery were obtained before and after 5 minutes of hind limb ischemia.
Reproducible ischemia (seen as complete abrogation of Doppler flow
wave) and reperfusion of the hind limb (reappearance of Doppler flow
waveforms after 5 minutes of ischemia) were achieved with a traction
suture as an arterial loop occluder that was positioned upstream of the
site to be visualized, around the left common iliac artery, through a
transfemoral access. The loop occluder consisted of a 7-0 nylon filament
around the artery that was externalized and skin was closed with suture.
Baseline readings were recorded after a 10-minute equilibration period
followed by complete hind limb ischemia achieved by using the traction

suture to occlude the common iliac artery. After 5 minutes of ischemia,
the hind limb was reperfused by release of the occluder. Reactive
hyperemia was measured by Doppler flow velocity of the left femoral
artery at reperfusion and at 1, 2, 3, 4, and 5 minutes postreperfusion.

Biochemical Measurements
Random blood glucose was measured using Ascensia Contour
glucometer (Bayer) as previously described.16 Identification and
quantification of the major long-chain acyl CoA molecular species
and myocardial ceramide levels (C18) were performed by high-
performance liquid chromatography as previously described.16 Left
ventricular (LV) myocardial ACE2 activity was measured using a
specific fluorogenic substrate and calculated as the DX-600 sup-
pressible activity as previously described.13

Histological Analyses, TUNEL Assay,
and Immunofluorescence
Hearts were arrested in diastole with 1 mol/L KCl, fixed with 10%
buffered formalin, and embedded in paraffin. Ten-micrometer-thick
sections were stained with picro-sirius red and visualized using fluores-
cence microscopy as previously described.13 Myocyte cross-sectional
area was measured using wheat germ agglutinin-oregon 488 (Invitro-
gen) staining in 5-micrometer-thick OCT-embedded cryosections. In
situ DNA fragmentation was detected in 15-micrometer-thick cryosec-
tions using the commercially available terminal deoxynucleotidyltrans-
ferase-mediated dUTP nick-end labeling (TUNEL) assay according to
manufacturer’s instructions (Invitrogen). Nitrotyrosine immunofluores-
cence staining was performed in 5-micrometer-thick aorta cryosections
using rabbit antinitrotyrosine (Millipore) primary antibody and TRITC-
conjugated goat antirabbit (Abcam) secondary antibody.

Real-Time Reverse-Transcriptase Polymerase
Chain Reaction and Western Blot Analysis
Myocardial mRNA expression levels were quantified by Taqman
reverse-transcriptase polymerase chain reaction (Online Table I) as
described previously.13,16,18 Western blotting was performed to

Non-standard Abbreviations and Acronyms

ACE2 angiotensin-converting enzyme 2

Ang 1-7 angiotensin 1-7

Ang II angiotensin II

�-MHC �-myosin heavy chain

BNP brain natriuretic peptide

DHE dihydroethidium

ECM extracellular matrix

eNOS endothelial nitric oxide synthase

ERK1/2 extracellular signal regulated kinases-1/2

FMD flow-mediated dilation

JAK2 Janus-activated kinase-2

MMP matrix metalloproteinase

NO nitric oxide

NOX2 NADPH oxidase 2

PKC protein kinase C

PLN phospholamban

RAS renin angiotensin system

SERCA2 sarcoplasmic reticulum Ca2�-ATPase2a

STAT3 signal transducer and activator of transcription-3

TIMP tissue inhibitor of metalloproteinase

TUNEL terminal deoxynucleotidyl transferase-mediated dUTP nick-end
labeling
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detect ACE2, protein kinase C� (PKC�), phosphorylated and total
levels of Akt (serine-473 and threonine-308), JAK2 (tyrosine-1007/
1008), STAT3 (tyrosine-705), ERK-1/2 (threonine-177), and endo-
thelial nitric oxide synthase (eNOS; serine-1177) using specific
antibodies (Cell Signaling), pyruvate dehydrogenase-4 (Abgent Can-
ada), and, for SERCA2a, phospho (serine 16)-phospholamban and
total phospholamban (Santa Cruz), as previously described.13,16,18

Blots were scanned and quantified using ImageQuant LAS 4000 (GE
Healthcare, Biosciences).

Plasma and Myocardial Peptide Levels
Plasma and LV myocardial Ang II and Ang 1–7 levels were
measured at the Hypertension Core Laboratory, Wake Forest Uni-
versity, Winston-Salem, North Carolina, as previously described.13,14

Gelatin Zymography, Collagenase, and Gelatinase Activity
Gelatin zymography was performed as previously described.12 Total
collagenase and gelatinase activities were measured using fluores-

cent-based activity assays from EnzCheck (Molecular Probes) as
described previously.19,20 Samples were analyzed using a Spectra-
Max M5 microplate reader (Molecular Devices).

Superoxide Assay and Dihydroethidium Staining
The chemiluminescence lucigenin assay was used to measure NA-
DPH oxidase activity as we have previously described.13,14 The
specific peptide inhibitor of NADPH oxidase, gp91phox ds tat
(50 �mol/L), was used to confirm superoxide generation from
NADPH oxidase.13,14 Dihydroethidium (DHE) fluorescence studies
were performed on 20-micrometer-thick frozen myocardial sections,
which were washed with Hank’s balanced salt solution incubated at
37°C for 30 minutes with DHE (20 �mol/L) in Hank’s balanced salt
solution, and then imaged using confocal microscopy.

Statistical Analysis
Comparison between two groups was made using a nonpaired
Student t test (Figure 1A–C; Online Figure IA, E). Two-way

Figure 1. Upregulation of angiotensin-converting enzyme 2 (ACE2) in diabetic hearts, with loss of ACE2 increasing angiotensin
(Ang) II levels and activating pathological gene expression. ACE2 mRNA expression (A), protein levels (B), and ACE2 activity (C) are
upregulated in Akita hearts, whereas loss of ACE2 in the Akita/ACE2 knockout (KO) increases plasma (D) and myocardial (E) Ang II lev-
els and is associated with increased �-skeletal actin (�-SA) (F), �-myosin heavy chain (�-MHC) (G), and brain-type natriuretic peptide
(BNP) (H) expression in the heart in the absence of overt hypertrophy (I). ND, not detectable; LVW, left ventricular weight; TL, tibial
length; RE, relative expression; RR, relative ratio; n�6 (A–C), n�15 (D, E), and n�10 (F–I). $P�0.05 compared to the wild-type (WT)
group. *P�0.05 for the main effects and #P�0.05 for the interaction using two-way ANOVA.

1324 Circulation Research May 11, 2012

 by guest on May 26, 2012http://circres.ahajournals.org/Downloaded from 

http://circres.ahajournals.org/


ANOVA using diabetic state and ACE2 status as the two indepen-
dent variables (factors) was performed to compare the data between
the four experimental groups (WT, Akita, ACE2KO, and Akita/
ACE2KO; Figure 1D–I, Figures 2–6, Online Figure IC, D; II–V,
VIA). In experiments with multiple treatments, one-way ANOVA
was followed by multiple comparison using the Student Neuman-
Keuls test (Figures 7, 8, Online Figure IB, Online Figure VIB–VIII).
Statistical analyses were performed using the SPSS Statistics 19
software. Averaged values are presented as means � SEM. Statis-
tical significance is recognized at P�0.05.

Results
Loss of ACE2 Increases Ang II Levels, Activates
Pathological Gene Expression, and Leads to
Systolic Dysfunction in Diabetic Hearts
Expression analysis and Western blotting showed a significant
increase in ACE2 mRNA and protein levels (Figure 1A, B),

resulting in increased ACE2 activity in Akita diabetic hearts
(Figure 1C) without changes in ACE2 levels in the kidneys and
a concordant increase in ACE2 levels in diabetic db/db hearts
(Online Figure IA, B). We hypothesize that upregulation of
ACE2 suppressed the activation of the RAS in a diabetic state
and, as such, we generated Akita/ACE2KO double-mutant mice
to probe the pathophysiological relevance of ACE2. Plasma and
myocardial levels of Ang II were similar in WT, Akita, and
ACE2KO mice, whereas Akita/ACE2KO mice showed signifi-
cantly higher levels confirming activation of the RAS (Figure
1D, E). Interestingly, plasma and myocardial levels of Ang 1–7
were similar across all four experimental groups (Figure 1D, E).
Loss of ACE2 conceivably could lead to differential impact on
hyperglycemia and blood pressure. However, we found a mark-
edly sustained and equivalent hyperglycemia in Akita and

Figure 2. Loss of angiotensin-converting enzyme 2 (ACE2) leads to systolic dysfunction in diabetic Akita mice. Echocardiograph-
ic assessment of heart function showing M-mode images and parasternal long-axis views (A) and transmitral flow pattern and tissue
Doppler imaging (B) showing systolic dysfunction in Akita/ACE2 knockout (KO) hearts within a background of diastolic dysfunction in
the Akita hearts. Quantitative evaluation of systolic function showing reduction in left ventricular (LV) ejection fraction (LVEF) (C) and LV
fractional shortening (LVFS) (D) in Akita/ACE2KO mice coupled with equivalent diastolic dysfunction illustrated by elevation of the E/E�
ratio (E) in Akita and Akita/ACE2KO mice. n�12 for each group. #P�0.05 for the interaction using two-way ANOVA.
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Akita/ACE2KO mice at 3 and 6 months of age and in 6-month
old db/db mice (Online Figure IC–E). Similarly, systolic blood
pressure was comparably elevated in Akita and Akita/ACE2KO
mice with a mild reduction in body weight (Online Figure
IIA–C). Ang II is a well-known mediator of pathological
remodeling in the heart13,21 and myocardial expression of
�-skeletal actin, �-MHC, and BNP were increased in Akita/
ACE2KO mice (Figure 1F–H), indicating pathological changes
in the absence of overt hypertrophy based on morphometry and
myocyte cross-sectional area (Figure 1I, Online Figure IID, E).
These results illustrate that ACE2 is upregulated in diabetic
hearts and loss of ACE2 results in increased Ang II levels and

pathological myocardial gene expression without a differential
effect on hyperglycemia or blood pressure.

The Akita mouse is a well-characterized nonobese model of
type 1 diabetes and closely mimics the human diabetic condi-
tion.16,22,23 WT, Akita, and ACE2KO mice at 6 months of age
showed comparable and normal systolic function (Figure 2A, B
and Online Table II). In contrast, LV fractional shortening
(Figure 2C) and LV ejection fraction (Figure 2D) declined
significantly in Akita/ACE2KO mice, indicating LV systolic
dysfunction with mild LV dilation (Figure 2 and Online Table
II). Tissue Doppler imaging is a novel technique to assess
diastolic function and showed a reduction in E� and E�/A� ratio

Figure 3. Activation of signaling path-
ways in Akita and Akita/angiotensin-
converting enzyme 2 (ACE2) knockout
(KO) hearts. Western blot analysis of pro-
tein kinase C (PKC-�) (A) and phosphory-
lation of serine-473 Akt (B) and threonine-
308 Akt (C) showing greater increase in
PKC-� and a greater loss of Akt phos-
phorylation in Akita/ACE2KO hearts com-
pared with Akita hearts. Western blot
analysis of phospho and total endothelial
nitric oxide synthase (eNOS) (D) showed a
significant increase in ACE2KO hearts,
which was lost in the Akita/ACE2KO
hearts. Western blot analysis of phospho
and total Janus-activated kinase-2 (JAK2)
(E) and signal transducer and activator of
transcription-3 (STAT3) (F) showed equiv-
alent elevation in Akita and Akita/ACE2KO
hearts. RR, relative ratio; ph, phosphory-
lated; t, total. n�5 for each group.
*P�0.05 for the main effects and #P�0.05
for the interaction using two-way ANOVA.
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and elevation in E/E� that, coupled with enlarged left atrial size,
are indicative of elevated LV filling pressure and diastolic
dysfunction in Akita and Akita/ACE2KO hearts (Figure 2 and
Online Table II). The progressive nature of the cardiomyopathy
in Akita/ACE2KO hearts resulted in a restrictive filling pattern
with elevated E/A ratio and reduced isovolumetric relaxation
time (Figure 2B and Online Table II). These data indicate that in

a diabetic state, loss of ACE2 results in systolic dysfunction in a
background of diastolic dysfunction.

Pathological Signaling, Lipotoxicity, and
Downregulation of SERCA2
Activation of PKC plays a fundamental role in mediating the
pathological effects associated with a hyperglycemia diabetic

Figure 4. Increased activation of the NADPH oxidase system and degradation of the extracellular matrix in Akita/angiotensin-
converting enzyme 2 (ACE2) knockout (KO) hearts. Increased NOX2 levels (A) and phosphorylation of the p47phox subunit (B),
resulting in increased NADPH oxidase activity (C) in Akita hearts, with a greater increase in Akita/ACE2KO hearts, which was confirmed by
dihydroethidium (DHE) staining showing greater superoxide generation in Akita/ACE2KO hearts (D). Picro-sirius red (PSR) staining and imag-
ing using fluorescence microscopy showing intact and organized extracellular matrix (ECM) in wild-type (WT), Akita, and ACE2KO hearts and
a degraded and disorganized ECM in the Akita/ACE2KO heart (E). Morphometric quantification of picro-sirius red staining showed decreased
myocardial collagen content in Akita/ACE2KO hearts compared to all other hearts (F) (n�3 sections from each heart). The specificity of
NADPH oxidase in contributing to the chemiluminescence was verified by using gp91phox ds tat and scr ds tat peptides (D). RR, relative
ratio; AU, arbitrary unit. n�5 for each group except for (C), in which n�8 for each group. *P�0.05 for the main effects and #P�0.05 for the
interaction using two-way ANOVA. $P�0.05 compared to the Akita/ACE2KO group with the scrambled peptide (Scr tat).
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state,24–26 whereas insulin and Ang II activates ERK1/2, PI3K/
Akt, and eNOS signaling cascades in the myocardium.27–29 To
elucidate the basis of the systolic dysfunction in Akita/
ACE2KO hearts, we chose to study the activation of these
various signaling pathways implicated in the development of
cardiomyopathy. PKC� expression is significantly upregu-
lated in Akita and Akita/ACE2KO myocardium, with a
greater elevation in the latter group (Figure 3A). Phosphory-
lation of Akt at the serine-473 (Figure 3B) and threonine-308
(Figure 3C) residues diminished significantly in Akita hearts
and, to a greater extent, in Akita/ACE2KO hearts compared
to WT and ACE2KO hearts. Phosphorylation of eNOS at
serine-1177 residue was drastically increased in ACE2KO
hearts but was lost in the Akita/ACE2KO hearts (Figure 3D),

whereas a comparable increase in phosphorylation of Janus-
activated kinase-2 (JAK2) and signal transducer and activator
of transcription-3 (STAT3; Figure 3E, F) and ERK1/2 (On-
line Figure IIIA) were observed in Akita and Akita/ACE2KO
hearts. Thus, loss of ACE2 triggers PKC� expression and a
greater loss of Akt and eNOS signaling in diabetic hearts.

Lack of insulin action could lead to fatty acid accumulation
and lipotoxicity, which has been linked to diastolic dysfunc-
tion.30,31 Myocardial long-chain fatty acid (palmitoyl CoA,
oleoyl CoA, stearoyl CoA) and ceramide were elevated by
approximately two-fold in the Akita hearts at 6 months and
this was not increased further in Akita/ACE2KO hearts
(Online Figure IIIB–D). Loss of insulin signaling also was
associated with upregulated mRNA and protein levels of

Figure 5. Loss of angiotensin-converting enzyme 2 (ACE2) triggers greater activation of the metalloproteinases in the Akita
hearts. Gelatin zymography shows greater levels of matrix metalloproteinase (MMP) 9 (A), which is quantified and shown (B) with
greater pro-MMP2 and active MMP2 levels (C) in the Akita/ACE2 knockout (KO) hearts. Gelatinase and collagenase activities showing
elevated activity in Akita/ACE2KO hearts in the absence of detectable changes in wild-type (WT), Akita, and ACE2KO hearts (D).
Expression analysis of mRNA levels showing elevated MMP9 (E), MMP12 (F), MMP13 (G), and MMP14 (MT1-MMP) (H) expression, with
no detectable change in MMP2 mRNA levels (I) in Akita/ACE2KO hearts. AU, arbitrary unit; RE, relative expression. n�10 for each
group except for (A—C), in which n�5. *P�0.05 for the main effects and #P�0.05 for the interaction using two-way ANOVA.
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pyruvate dehydrogenase-4 in Akita hearts (Online Figure
IIIE, F). Diastolic dysfunction is linked to suppressed activity
of sarcoplasmic reticulum Ca2�-ATPase2a (SERCA2a)
pump, which is responsible for the removal of approximately
90% of Ca2� from the cytoplasm.32,33 SERCA2a expression
declined dramatically in both Akita and Akita/ACE2KO
compared to WT and ACE2KO, whereas the expression of
PLN and phospho-PLN was not altered in any of the
experimental groups (Online Figure IVA, B). Analysis of
apoptosis showed no significant upregulation of apoptosis in
Akita hearts, which was not exacerbated by loss of ACE2

(Online Figure IVC–E). We conclude that the similar extent
of lipotoxicity and downregulation of SERCA2a likely un-
derlies the comparable diastolic dysfunction in the Akita and
Akita/ACE2KO models.

Greater Activation of the NADPH Oxidase and
Matrix Metalloproteinases in
Akita/ACE2KO Hearts
Hyperglycemia and activation of the RAS are well-known
stimulants of the NADPH oxidase system.13,14,34 Diabetes
significantly increased the NADPH oxidase subunit, NOX2,

Figure 6. Loss of angiotensin-converting enzyme 2 (ACE2) impaired flow-mediated dilation and activated the vascular NADPH
oxidase system. Illustrative images (A) and quantification of flow-mediated velocity profile (B) in left femoral artery in response to is-
chemia-reperfusion showing a marked impairment of the in vivo flow-mediated dilation (FMD) in Akita/ACE2 knockout (KO) mice cou-
pled with increased vascular oxidative stress as assessed by NADPH oxidase activity (C) and dihydroethidium (DHE) staining (D), with
arrow indicating the start of reperfusion. Representative images of nitrotyrosine immunofluorescence showing increased nitrotyrosine
levels in Akita aorta, which further increase in Akita/ACE2KO aorta (E), with arrowheads indicating nitrotyrosine staining in endothelium
in Akita and Akita/ACE2KO aortae (nitrotyrosine [red], elastin autofluorescence [green], and DAPI-stained nuclei [blue]). The specificity
of NADPH oxidase in contributing to the chemiluminescence was verified by using gp91phox ds tat and scr ds tat peptides (C). n�6
for each group except for (C), in which n�12. *P�0.05 for the main effects and #P�0.05 for the interaction using two-way ANOVA.
$P�0.05 compared to the Akita/ACE2KO group with the scrambled peptide (Scr tat).
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levels in the heart (Figure 4A). Phosphorylation of the
p47phox subunit, a key mediator of Ang II-induced NADPH
oxidase activation,14,35 was approximately two-fold higher in
Akita myocardium and was further exaggerated in Akita/
ACE2KO hearts (Figure 4B). In line with these findings,
NADPH oxidase activity was significantly higher in Akita/

ACE2KO hearts, resulting in enhanced superoxide genera-
tion, as assessed by lucigenin-enhanced chemiluminescence
(Figure 4C) and DHE staining for superoxide levels (Figure
4D). NADPH oxidase activity and DHE fluorescence inten-
sity were increased further in Akita/ACE2KO compared to
Akita hearts. The specificity of NADPH oxidase activity was

Figure 7. Blockade of AT1 receptor reverses the impairment in flow-mediated dilation and normalizes vascular oxidative stress
in Akita/angiotensin-converting enzyme 2 (ACE2) knockout (KO) model. Illustrative images (A) and quantification of flow-mediated
velocity profile (B) in left femoral artery in response to ischemia-reperfusion showing a normalization of the impairment in the in vivo
flow-mediated dilation (FMD) in Akita/ACE2KO mice treated with irbesartan. Arrow indicates the start of reperfusion. Vascular oxidative
stress as assessed by NADPH oxidase activity (C) and superoxide level-based dihydroethidium (DHE) fluorescence (D) showed a com-
plete suppression of the elevated oxidative stress in the Akita/ACE2KO aorta in response to AT1 receptor blockade. Representative
images of nitrotyrosine immunofluorescence showing attenuation of the elevated nitrotyrosine level in Akita/ACE2KO aorta in response
to irbesartan treatment (E), with arrowheads indicating nitrotyrosine staining in the endothelium (nitrotyrosine [red], elastin autofluores-
cence [green], and DAPI-stained nuclei [blue]). n�8 for each group. $P�0.05 compared to all other groups.
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verified by using the specific NADPH oxidase inhibitor,
gp91phox ds tat peptide.

Adverse remodeling of the ECM is a key pathogenic factor
in systolic heart failure and has been linked to activation of
the RAS and NADPH oxidase.7,8,36 Fluorescence-based im-
aging of the ECM showed a marked degradation of the ECM
network and loss of collagen content in Akita/ACE2KO

hearts, whereas the WT, Akita, and ACE2KO hearts all
showed an intact ECM (Figure 4E, F). Ang II–mediated
oxidative stress is known to activate matrix metalloprotei-
nases (MMPs), leading to degradation of ECM proteins.
Gelatin zymography showed increased MMP9 level in Akita/
ACE2KO hearts (Figure 5A, B). Importantly, loss of ACE2
increased pro-MMP2 and active MMP2 in Akita hearts

Figure 8. AT1 receptor blockade rescues the systolic dysfunction, suppresses superoxide production, and activates phosphory-
lation of Akt and endothelial nitric oxide synthase (eNOS) in Akita/angiotensin-converting enzyme 2 (ACE2) knockout (KO)
hearts. Echocardiographic assessment of heart function showing M-mode images (A) and tissue Doppler imaging (B) showing marked
reversal of the systolic dysfunction with persistent diastolic dysfunction in Akita/ACE2KO hearts treated with irbesartan. Quantification
of echocardiographic data showing normalization of the reduction in left ventricular (LV) fractional shortening (LVFS) (C) and LV ejection
fraction (LVEF) (D) in response to treatment with irbesartan, whereas the E/E� ratio (E) was unaffected in Akita/ACE2KO mice. Myocar-
dial oxidative stress as assessed by NADPH oxidase activity (F) and superoxide level-based dihydroethidium (DHE) fluorescence (G)
showed a complete suppression of the elevated oxidative stress in Akita/ACE2KO hearts in response to AT1 receptor blockade. West-
ern blot analysis showed restored phosphorylation of Akt (H) and elevated phosphorylation of eNOS (I) in response to treatment with
irbesartan in Akita/ACE2KO hearts. AU, arbitrary unit; RR, relative ratio; Irb, irbesartan. n�12 for each group except for Akita/ACE2KO
plus irbesartan group in which n�10, and (H) and (I) in which n�5. $P�0.05 compared to all other groups.
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(Figure 5A, C). MMP2 and MMP9 are major gelatinases,
whereas MMP2 also is a potent collagenase in the heart.37

Gelatinase and collagenase activities were increased only in
the Akita/ACE2KO hearts, thereby providing further evi-
dence for an ECM-degrading environment in Akita/ACE2KO
hearts (Figure 5D). Expression analysis of mRNA levels
showed increased MMP9, MMP12, MMP13, and MMP14
(MT1-MMP) levels (Figure 5E–H) and MMP8 level (Online
Figure VA), whereas MMP2 level was unchanged (Figure
5I), suggesting posttranscriptional activation of MMP2 is a
key factor in mediating increased MMP2 protein levels.
Although TIMP1 expression was increased in Akita/
ACE2KO hearts, TIMP2 and TIMP3 levels were unchanged
and TIMP4 level was reduced (Online Figure VB–E).

Loss of ACE2 Impairs Flow-Mediated
Vasodilation and Increases Vascular Oxidative
Stress in Akita Model: Role of the AT1 Receptor
Endothelial dysfunction and vascular oxidative stress have
been linked to the development of diabetic cardiomyopa-
thy.25,38–40 Given the systemic disturbance of the RAS, we
assessed the in vivo endothelial function in the Akita diabetic
model and in response to ACE2 deficiency. We measured
changes in blood flow velocity before and after ischemia-
reperfusion of the femoral artery using high-resolution vas-
cular ultrasonography. Baseline flow velocity was not differ-
ent among the four experimental groups. Transient ischemia
was followed by reactive hyperemia seen as an increase in
flow velocity immediately after reperfusion in WT, Akita,
ACE2KO, and Akita/ACE2KO mice (Figure 6A, B). Femoral
flow velocity progressively declined to baseline value within
5 minutes in all groups, except in the Akita/ACE2KO mice,
in which the flow velocity remained elevated even after 5
minutes of reperfusion (Figure 6A, B). These data show that
in vivo flow-mediated dilation (FMD) is impaired in the
Akita/ACE2KO model, suggestive of endothelial dysfunc-
tion. Increased vascular oxidative stress has been linked to
endothelial dysfunction, a key mediator of FMD. Consistent
with impaired FMD, aortic NADPH oxidase activity (Figure
6C) and DHE staining for superoxide (Figure 6D) showed
increased oxidative stress in Akita/ACE2KO aorta and
greater formation of nitrotyrosine (Figure 6E). We showed
that loss of ACE2 leads to increased Ang II levels, a key
mediator of vascular oxidative stress. We examined the
impact of AT1 receptor blockade on the FMD and vascular
oxidative stress. Treatment with the AT1 receptor blocker,
irbesartan, prevented the impairment in FMD in Akita/
ACE2KO mice based on femoral artery flow profile (Figure
7A, B), whereas the elevated NADPH oxidase was normal-
ized (Figure 7C). DHE and nitrotyrosine fluorescence stain-
ing showed a marked reduction in superoxide levels and
nitrotyrosine formation in response to AT1 receptor blockade,
respectively (Figure 7D, E). These results show that loss of
ACE2 impairs FMD and is linked to activation of the vascular
NADPH oxidase system and formation of nitrotyrosine.

AT1 Receptor Blockade Prevents Systolic
Dysfunction in the Akita/ACE2KO Model
Given the rescue of the vascular changes by AT1 receptor
blockade, we next tested the critical role of the Ang II/AT1R

axis in mediating cardiac dysfunction in the Akita/ACE2KO
murine model. Western blotting analysis showed significant
increase of AT1R in Akita and Akita/ACE2KO hearts (On-
line Figure VIA). The increased AT1R density coupled with
increased agonist stimulation likely perpetuate the Ang II–
mediated adverse myocardial effects. Systolic dysfunction
and the mild LV dilation in the Akita/ACE2KO mice showed
a drastic normalization in response to treatment with irbesar-
tan, whereas diastolic dysfunction persisted (Figure 8A–E,
Online Table III), suggesting that the diastolic dysfunction is
independent of the Ang II/AT1R axis. Irbesartan failed to
prevent the diastolic dysfunction and elevated oxidative stress
in Akita hearts (Online Figure VIB–I). In the Akita/ACE2KO
mice, AT1R blockade significantly reduced the elevation in
myocardial NADPH oxidase activity (Figure 8F) and super-
oxide generation (Figure 8G) while preventing the loss in
phospho-Akt (Figure 8H) and restoring the elevation in
phospho-eNOS levels (Figure 8I). The increased collagenase
and gelatinase activity were also suppressed by irbesartan,
resulting in normalization of the ECM architecture and
collagen content in Akita/ACE2KO hearts (Online Figure
VII). Although treatment with irbesartan and Ang 1–7 pro-
duced similar decrease in systolic blood pressure, Ang 1–7
failed to rescue the systolic dysfunction in Akita/ACE2KO
mice (Online Figure VIII). These results show that we can
uncouple systolic and diastolic dysfunction in a diabetic heart
and pharmacological antagonism of the AT1 receptor re-
verses the systolic dysfunction and key pathophysiological
processes in the Akita/ACE2KO hearts.

Discussion
Diabetic cardiomyopathy is characterized by early diastolic
and vascular dysfunction, which progresses into systolic
dysfunction, resulting in heart failure.1–5 The RAS plays a
central role in diabetic cardiomyopathy, and pharmacological
inhibitors of the RAS are cornerstone to minimizing the
cardiovascular complications. In an effort to determine the
role of ACE2, we created ACE2-deficient Akita mice to
determine the role of ACE2 in diabetic cardiomyopathy. The
Akita murine model is a well-validated model of human
diabetes16,22 and also displays features compatible with type 2
diabetes, including insulin resistance.23 Our study defines a
critical role of ACE2 in suppressing the activation of the RAS
in the heart such that loss of ACE2 results in increased Ang
II/AT1 receptor signaling, adverse myocardial remodeling
resulting in systolic dysfunction, vascular oxidative stress,
and impaired flow-mediated dilation. In addition to its effects
on the heart, Ang II affects virtually all vascular cells and is
critical in endothelial dysfunction, which is a key determinant
in the development and progression of diabetic complica-
tions.4,25 Blockade of the AT1 receptor resulted in marked
improvement in systolic dysfunction with reversal of the
pathological effects in the vasculature and heart of Akita/
ACE2KO mice. The failure of AT1 receptor blockade to
reverse the diastolic dysfunction in the Akita model is
consistent with clinical trials in patients with diastolic heart
failure in which AT1 receptor blockers failed to improve
clinical outcomes.41,42
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The upregulation of ACE2 in diabetic Akita and db/db
hearts is likely a key compensatory mechanism responsible
for inhibiting activation of the RAS. In the diabetic condition,
Ang II responses in myocardium and vasculature are aug-
mented because of upregulation of Ang II type 1 receptor,
thereby increasing Ang II sensitivity.43 Inhibition of the AT1
receptor reduces adverse outcomes from heart failure in
patients with diabetes.9 ACE2, a homologue of ACE, is a
carboxypeptidase that metabolizes Ang II to yield Ang 1–7
and lowers Ang II/Ang 1–7 ratio. The results from this study
are consistent with other models of heart failure whereby loss
of ACE2 exacerbates heart disease after myocardial infarc-
tion12 and pressure overload.14 Loss of ACE2 also exacer-
bates diabetic nephropathy,44 which is a known correlate of
cardiovascular disease.45 Although loss of ACE2 elevated
Ang II levels as predicted, we did not observe a correspond-
ing decrease in Ang 1–7 levels in our model. Moreover, Ang
1–7 supplementation failed to rescue the systolic dysfunction
in the Akita/ACE2KO mice. These results suggest that
alternative pathways for Ang 1–7 generation are activated in
a diabetic state such as the potent and high-capacity neprily-
sin enzyme and/or prolyl carboxypeptidase.46–49

Altered signaling may be an important driver of the
phenotypic changes observed in the Akita and Akita/
ACE2KO hearts. Because PKC has been shown to inhibit
myofibrillar ATPase and sarcoplasmic reticular Ca2�

pump26,50 activities, it is possible that upregulation of PKC�
in the diabetic heart may have exacerbated the cardiomyop-
athy in the Akita/ACE2KO model. Akita hearts also show
suppressed insulin-dependent signaling and evidence of lipo-
toxicity coupled with increased expression of pyruvate dehy-
drogenase kinase-4 and downregulation of SERCA2a. Akt
and eNOS are positive modulators of myocardial contractil-
ity,29,51 and the greater loss of phospho-Akt and phospho-
eNOS in the Akita/ACE2KO hearts may contribute to the
impaired systolic performance. Adverse remodeling of the
ECM is a key pathogenic factor in heart failure and has been
linked to activation of the RAS and NADPH oxidase.7,8,36

Lack of myocardial fibrosis in Akita/ACEKO mice was
accompanied by upregulation of MMP8, MMP9, MMP12,
MMP13, and MMP14 expression, MMP2 and MMP9 protein
levels (and their activities), which are the key ECM-
degrading enzymes,37,52 leading to further adverse remodel-
ing of the ECM, LV dilation, and systolic dysfunction.37,52

Microvascular complications associated with diabetes also
can adversely affect myocardial remodeling, and diabetic
cardiomyopathy has been identified as a microvascular com-
plication.53,54 FMD is elicited by changes in blood flow,
causing shear stress–induced release of nitric oxide by the
endothelium.55–58 Cellular oxidative stress and endothelial
dysfunction are pivotal in the pathogenesis of cardiovascular
diseases and are closely linked to circulating and tissue levels
of Ang II.59 Ang II can increase tyrosine-657 phosphorylation
of eNOS, leading to decrease nitric oxide production and
endothelial dysfunction.60 Ang II–mediated reactive oxygen
species production has the potential to further impair nitric
oxide bioavailability by the consumption of nitric oxide and
formation of peroxynitrite, leading to impaired endothelial
relaxation and dysfunction.39,58,61 Nitrotyrosine level, a

marker of peroxynitrite formation, was elevated in Akita/
ACE2KO aorta, which was reversed by treatment with
irbesartan. AT1 receptor blockade clearly improved vascular
oxidative stress, restored FMD, and prevented the develop-
ment of systolic dysfunction in the Akita/ACE2KO model.
Ang II activation of the AT1 receptor results in increased
NADPH oxidase activity and enhanced reactive oxygen
species generation.34 The pathophysiological effects attribut-
able to elevated Ang II levels in an ACE2-null environment
are likely to be augmented by upregulation of the Ang II type
1 receptor in the Akita/ACE2KO hearts.

In summary, our study demonstrates loss of ACE2 exac-
erbates an underlying diabetic cardiomyopathy dysfunction
resulting in a phenotype showing both diastolic and systolic
dysfunction. We have identified increased oxidative stress,
excessive ECM degradation, and vascular dysfunction
brought about by upregulation of RAS in the absence of
ACE2 as the underlying mechanism for the observed
systolic dysfunction. Importantly, we have uncoupled
diastolic and systolic dysfunction in our experimental
models and have provided distinct mechanisms for each
phenotype. Increased ACE2 expression and/or activity can
represent a viable approach to minimize diabetes-induced
cardiovascular complications.
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Novelty and Significance

What Is Known?
● Diabetes mellitus results in severe cardiovascular complications, and

heart disease remains the major cause of death in patients with
diabetes.

● Activation of the rennin-angiotensin system (RAS) plays a key role in
the progression of diabetic complications, and AT1 receptor
blockers reduce these complications.

● Angiotensin-converting enzyme 2 (ACE2; a type I transmembrane
protein that converts angiotensin (Ang) II into Ang 1–7) is a
negative regulator of the RAS.

What New Information Does This Article Contribute?
● Loss of ACE2 in diabetic Akita mice exhibits exacerbated diabetic

cardiomyopathy, resulting in systolic dysfunction associated
with increased oxidative stress and extracellular matrix (ECM)
degradation.

● Loss of ACE2 increased vascular oxidative stress and dysfunction in
diabetic mice.

● Treatment with AT1 receptor blocker, irbesartan, prevented the
systolic and vascular dysfunction in the Akita/ACE2KO model.

Diabetic cardiomyopathy is characterized by early diastolic and
vascular dysfunction that progresses into systolic dysfunction,
resulting in heart failure. The RAS has been shown to play an
important role in diabetic cardiovascular complications. ACE2, a
monocarboxypeptidase, metabolizes Ang II to yield Ang 1–7,
essentially negatively regulating the RAS. Our study demonstrates
that myocardial ACE2 levels are increased in Akita and db/db
diabetic models. Loss of ACE2 exacerbates underlying diabetic
cardiomyopathy characterized by diastolic dysfunction, resulting in
a phenotype showing both diastolic dysfunction and systolic
dysfunction, which were associated with increased oxidative stress
and ECM degradation in Akita mice. Loss of ACE2 also enhanced
diabetes-induced increase in vascular oxidative stress and vascular
dysfunction. Treatment with the AT1R antagonist, irbesartan, res-
cued the systolic and vascular dysfunction in the ACE2-deficient
Akita diabetic mice, as a result of decreased oxidative stress and
ECM degradation. We conclude that increased ACE2 expression
and/or activity may be a viable approach to minimize secondary
cardiovascular complications of diabetes.
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Supplemental Methods 
 
Breeding Scheme. We used the following breeding scheme to generate WT, Akita, ACE2KO and 
Akita/ACE2KO murine models used in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tail-Cuff Systolic Blood Pressure. For the measurement of tail-cuff systolic blood pressure (TC-
SBP), conscious mice were placed in the restrainers and their body temperature was maintained at ~ 
34 °C by the warming chamber. The IITC tail cuff sensor containing both the inflation cuff and the 
photoelectric sensor was placed on the tail and attached to the restrainer. The cuff was inflated to a 
pressure of 200 mmHg and then deflated slowly. Upon reappearance of pulse signals, TC-SBP data 
from the IITC amplifier was recorded, analyzed and reported by the IITC software (IITC Life Science 
Blood Pressure System, Woodland Hills, CA). The mice were trained on three occasions before actual 
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recordings were made and the corresponding TC-SBPs were averaged from three readings and used 
for the averaged comparisons. 
 
Echocardiography and Tissue Doppler Imaging. Transthoracic echocardiography was performed 
and analyzed in a blinded manner as described previously using a Vevo 770 high-resolution imaging 
system equipped with a 30-MHz transducer (RMV-707B; VisualSonics, Toronto, Canada).1, 2  Mice 
were anesthetized with 0.75% isoflurane for the duration of the recordings. M-mode images were 
obtained for measurements of LV wall thickness (LVWT), LV end-diastolic diameter (LVEDD) and 
LV end-systolic diameter (LVESD) (measures of LV dilation). LV fractional shortening (FS) was 
calculated as FS (%)=(LVEDD–LVESD)/LVEDD)x100 and LV ejection fraction (EF) 
(%)=(LVEDV-LDESV)/LVEDVx100 as measures of systolic function. Diastolic function was 
assessed using pulsed-wave Doppler imaging of the transmitral filling pattern with the early 
transmitral filling wave (E-wave) followed by the late filling wave due to atrial contraction (A-wave). 
Isovolumetric relaxation time (IVRT) was calculated as the time from closure of the aortic valve to 
initiation of the E-wave. The deceleration time (DT) of the E-wave was determined by measuring the 
time needed for the down-slope of the peak of the E-wave to reach the baseline while the rate of E-
wave deceleration rate (EWDR) was calculated as the E-wave divided by the DT. Tissue Doppler 
imaging (TDI) was made at the mitral valve annulus in the modified four-chamber view at the base of 
the LV with the assessment of peak annular systolic (S’), early diastolic (E’) and late diastolic (A’) 
peak annular velocities.3, 4 The TDI technique represents a novel and validated technique to assess 
systolic and diastolic function with reduction in E’ and E’/A’ ratio and elevation in E/E’ being 
considered a valid marker of elevated LV filling pressure and diastolic dysfunction. 3, 4 
           
TaqMan Real-time PCR.  RNA expression levels of various genes were determined by TaqMan 
real-time PCR as previously described (see Supplemental Table I for list of primers and probes).5, 6 
Total RNA was extracted from flash-frozen tissuesusing TRIzol, and cDNA was synthesized from 1 
μg RNA by using a random hexamer. For each gene, a standard curve was generated using known 
concentrations of cDNA (0.625, 1.25, 2.5, 5, 10 and 20 µg) as a function of cycle threshold (CT). 
Expression analysis of the reported genes was performed by TaqMan real-time-PCR using ABI 7900 
Sequence Detection System. The SDS2.2 software (integral to ABI7900 real-time machine) fits the 
CT values for the experimental samples and generates values for cDNA levels. All samples were run 
in triplicates in 384 well plates. 18S rRNA was used as an endogenous control.  
 
Dihydroethidium Fluorescence. Dihydroethidium (DHE), an oxidative fluorescent dye, was used to 
measure superoxide (O2

–) levels in heart tissues from ACE2KO and WT mice as previously 
described.6 Briefly, the cultured and treated cardiomyocytes were washed with clear media (Eagle’s 
MEM) and then incubated at 37 °C for 30 min with DHE (20 μM) in clear media. For heart samples, 
20 μm fresh frozen tissue sections were washed with hanks balanced salt solution (HBSS) with 
magnesium and calcium and then incubated at 37 °C for 30 min with DHE (20 μM) in HBSS. For a 
separated experiment, heart tissue sections from mice with Ang II pumps or Ang II-treated 
cardiomyocytes were incubated with polyethylene glycol-conjugated superoxide dismutase (PEG-
SOD) (500U/mL) at 37 °C for 30 min prior to 30-min exposure of DHE (20 μM). In addition, one cell 
plate or one tissue slide was kept without DHE for blank control. The cell plates or tissue slides were 
wrapped with foil to minimize them exposure to light. Fluorescent images were observed with an 
Olympus Fluoview laser-scanning confocal microscope mounted on an Olympus microscope selected 
with CY3 (red) channel.  
 
Lucigenin-Enhanced Chemiluminescence. The activities of nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase in hearts of mice were quantified by lucigenin-enhanced 
chemiluminescence as previously described.6, 7 Briefly, the cardiomyocytes and heart homogenates 
(200 μg total proteins) were collected in 100 μl of phosphate buffer solution (PBS) mixture with 
phosphatase inhibitor and protease inhibitor and then centrifuged at 1000 g for 10 min. The 
supernatants were then collected and added NADPH (1mM) and lucigenin (50 μM) for NADPH 
oxidase activities assay with FB-12 luminometer in the presence or absence of diphenylene iodonium 

 by guest on May 26, 2012http://circres.ahajournals.org/Downloaded from 

http://circres.ahajournals.org/


Patel VB et al.                                                                                    ACE2 and Diabetic Cardiomyopathy   
 

3 
 

(DPI, 10 μM), a selective inhibitor of flavin-containing enzymes including NADPH oxidase. Data 
were calculated as the change in the rate of luminescence per minute per milligram of tissue.  
 
Terminal deoxynucleotidyltransferase – mediated dUTP nick-end labeling (TUNEL): In situ 
DNA fragmentation was detected using the TUNEL assay kit (Invitrogen) according to 
manufacturer’s instructions. Briefly, 15 µm thick LV cryosections were fixed with 4% 
paraformaldehyde and washed in Dulbecco’s PBS. The sections were then permeabilized with 0.1% 
Triton X-100 in 0.1% sodium citrate and washed with wash buffer. After one hour incubation with 
DNA labeling solution (terminal deoxynucleotidyltransferase and BrdUTP in reaction buffer) the 
sections were treated with Alexa Fluor 488 conjugated mouse anti-BrdU and counterstained with 
propidium iodide. The sections were mounted using Prolong Gold antifade mounting medium and 
visualized under fluorescence microscope (Olympus IX 81). TUNEL positive cells were counted 
using 60X magnification images with MetaMorph (Basic version 7.7.0.0) software and magnitude of 
apoptosis was expressed as % apoptotic cells. 
 
Histological Analysis. To study the heart morphometry, hearts were arrested in diastole with 1 M 
KCl, fixed with 10% buffered formalin, and embedded in paraffin. Ten micrometer thick sections 
were stained with Picro-sirius Red (PSR) and visualized under fluorescence microscope (Olympus 
IX81). PSR stained sections were used to assess interstitial and perivascular fibrosis. Five micrometer 
thick LV cryosections were stained with Oregon 488 conjugated wheat germ agglutinin (WGA) and 
counterstained with DAPI. The WGA-stained sections were visualized under fluorescence microscope 
(Olympus IX81) used to measure the myocyte cross-sectional area using Metamorph (Version 7.7.0.0) 
software.  
 
Immunohistochemistry. Nitrotyrosine immunostaining was performed on 5 micrometer thick aorta 
cryosections. Briefly, OCT embedded aorta cryosections were fixed with 4% formaldehyde for 20 
minutes, and rehydrated with PBS for 30 minutes. Aorta sections were then permeabilized with 0.2% 
Triton-X100 in PBS for 5 minutes, followed by blocking with 4% bovine serum albumin for 1 hour. 
They were then incubated with rabbit anti-nitrotyrosine (1:250; Millipore) overnight at 4°C in a 
humidified chamber. Sections were incubated with TRITC conjugated goat anti-rabbit (1:160; Abcam) 
secondary antibody at 37°C for 1 hour in a humidified chamber. Aorta sections were visualized under 
fluorescence microscope (IX81, Olympus) after mounting with ProlongGold antifade mounting 
medium with DAPI (Invitrogen). The cells were washed with PBS, three times for 5 minutes each, in 
between each steps.  
 
Western Blot Analysis. The phosphorylated and/or total proteins fromheart tissues and aortae of 
mice were measured by Western blot analysis as previously described.2, 6 Protein was extracted in 25 
mM Tris, 62.5 mM NaCl, 1.25 mM PMSF, 62.5 mM Glycerol-2-phosphate, 12.5 mM sodium 
pyrophosphate, 125 μM NaF, 6.25 μg/ml leupeptine, 312.5 μM sodium orthovanadate, 12.5% 
glycerol, pH 7.4, supplemented with 5% sodium dodecyl sulphate (SDS) and 1% Triton X-100. After 
quantification using the BCA Protein Array Kit (Pierce, Rockford, IL, USA), protein samples were 
separated by 8%~12% SDS-polyacrylamide gel electrophoresis and then transferred to nitrocellulose 
membrane (Millipore). The membrane was blocked with 5% milk in Tris-Buffered Saline Tween-20 
(TBST) for 2 h and then incubated overnight at 4oC with primary antibody against ACE2 (90 KD), 
PKC (80 kDa), -tubulin (55 kDa) and total and phosphorylated ERK1 (44 kDa), ERK2 (42 kDa), 
JAK2 (130 kDa) STAT3 (80 kDa) and phosphorylated and total eNOS (140 KDa) (Santa Cruz and 
Cell Signaling Inc.). The primary antibody was then removed, and membrane washed thoroughly with 
TBST. Membrane was then incubated with goat anti-rabbit IgG coupled to horseradish peroxidase 
(HRP) at a 1:3000 dilution in TBST for l h at room temperature, then rinsed thoroughly with TBST 
and then ECL was added. Blots were scanned and quantified using ImageQuantTMLAS 4000 (GE 
Healthcare, Biosciences, Quebec, Canada).   
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Supplemental Tables 
  
Supplemental Table I. List of Taqman Primers and Probes. 
 
Gene Primers/Probes Sequence  (Primer: 5'-3'; Probe: 5'-FAM- -TAMRA-3') 

 
α-SA Forward Primer CAGCCGGCGCCTGTT 

Reverse Primer CCACAGGGCTTTGTTTGAAAA 
Probe TTGACGTGTACATAGATTGACTCGTTTTACCTCATTTTG

β-MHC Forward Primer GTGCCAAGGGCCTGAATGAG 
Reverse Primer GCAAAGGCTCCAGGTCTGA 

Probe ATCTTGTGCTACCCAGCTCTAA 
BNP Forward Primer CTGCTGGAGCTGATAAGAGA 

Reverse Primer TGCCCAAAGCAGCTTGAGAT 
Probe CTCAAGGCAGCACCCTCCGGG 

MMP-2 Forward Primer AACTACGATGATGACCGGAAGTG 
Reverse Primer TGGCATGGCCGAACTCA 

Probe TCTGTCCTGACCAAGGATATAGCCTATTCCTCG 
MMP-9 Forward Primer CGAACTTCGACACTGACAAGAAGT 

Reverse Primer GCACGCTGGAATGATCTAAGC 
Probe TCTGTCCAGACCAAGGGTACAGCCTGTTC 

MMP-8 Forward Primer GATTCAGAAGAAACGTGGACTCAA 
Reverse Primer CATCAAGGCACCAGGATCAGT 

Probe CATGAATTTGGACATTCTTTGGGACTCTCTCAC 
MMP-12 Forward Primer GAAACCCCCATCCTTGACAA 

Reverse Primer TTCCACCAGAAGAACCAGTCTTTAA 
Probe AGTCCACCATCAACTTTCTGTCACCAAAGC 

MMP-13 Forward Primer GGGCTCTGAATGGTTATGACATTC 
Reverse Primer AGCGCTCAGTCTCTTCACCTCTT 

Probe AAGGTTATCCCAGAAAAATATCTGACCTGGGATTC 
MMP-14 Forward Primer AGGAGACAGAGGTGATCATCATTG 

Reverse Primer GTCCCATGGCGTCTGAAGA 
Probe CCTGCCGGTACTACTGCTGCTCCTG 

TIMP-1 Forward Primer CATGGAAAGCCTCTGTGGATATG 
Reverse Primer AAGCTGCAGGCACTGATGTG 

Probe CTCATCACGGGCCGCCTAAGGAAC 
TIMP-2 Forward Primer CCAGAAGAAGAGCCTGAACCA 

Reverse Primer GTCCATCCAGAGGCACTCATC 
Probe ACTCGCTGTCCCATGATCCCTTGC 

TIMP-3 Forward Primer CCG CAG CGG ACC ACA AC 
Reverse Primer (427) CCG GAT CAC GAT GTC GGA 
Reverse Primer (423) GGA TCA CGA TGT CGG AGT TGC 

Probe CTA CCA TGA CTC CCT GGC TT 
TIMP-4 Forward Primer TGCAGAGGGAGAGCCTGAA 

Reverse Primer GGTACATGGCACTGCATAGCA 
Probe CCACCAGAACTGTGGCTGCCAAATC 
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Supplemental Table II. Echocardiographic Data in WT, Akita, ACE2KO and 
Akita/ACE2KO mice at 6 months of age. 

 
Parameter  WT Akita ACE2KO Akita/ACE2KO 

N 10 10 10 12 

HR (bpm) 489±16 474±13 478±12 485±14 

E-wave (mm/s) 685±24.8 702±31.6 656±41 691±33.9 
A-wave (mm/s) 445±47.3 441±40 438±27 301±23.6 
E/A Ratio 1.54±0.1 1.59±0.09 1.5±0.06 2.29±0.12† 
IVRT (ms) 15.8±0.66 18.7±0.94* 16.4±0.78 13.4±0.96* 
E′ (mm/s) 26.3±1.7 21.8±1.86 28.1±1.6 20.3±2.5* 
E/E′ Ratio 27.9±1.8 33.1±1.7* 24.1±2.5 34±2.8* 
A′ 24.4±1.4 29.2±1.5* 25.1±1.2 31.2±2.5* 
E′/A′ 1.14±0.06 0.74±0.07* 1.12±0.05 0.65±0.08* 
LA Size (mm) 1.85±0.07 2.17±0.05* 1.79±0.09 2.39±0.11*,† 

LVEDD (mm) 3.79±0.05 3.71±0.04 3.77±0.06 3.86±0.08 

LVESD (mm) 2.59±0.06 2.52±0.05 2.54±0.06 2.89±0.12 

LVFS (%) 31.6±2.1 32.1±1.9 32.6±1.8 25.1±2.2† 

LVEF (%) 62.7±2.4 60.4±2 63.1±1.69 49.9±2.53† 

VCFc (circ/s)*10 6.3±0.51 6.13±0.38 6.22±0.41 4.71±0.3† 

LVPWT (mm) 0.66±0.03 0.71±0.023 0.69±0.02 0.67±0.024 
HR=heart rate; E-wave=peak early transmitral inflow mitral E velocity; A-wave=transmitral inflow 
velocity due to atrial contraction; IVRT=isovolumetric relaxation time; DT=deceleration time; 
EWDR=E-wave deceleration rate (E-wave/DT); E′=early diastolic tissue Doppler velocity; 
LVEDD=left ventricular end diastolic diameter; LVESD=left ventricular end systolic diameter; 
LVFS=LV fractional shortening; LVEF=LV ejection fraction; VCFc=Velocity of Circumferential 
Shortening corrected for Heart Rate; LVPWT=LV Posterior Wall Thickness. Results are presented as 
mean±S.E.M. *p<0.05 for the main effects and †p<0.05 for the interaction using two-way ANOVA.  
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Supplemental Table III. Echocardiographic assessment of diastolic and systolic function in 
Akita/ACE2KO mice in response to AT1 receptor blockade at 6 months of age. 
 
Parameter   WT Akita/ACE2KO 

+Placebo 
Akita/ACE2KO 

+Irbesartan 
N 12 12 10 

E′ (mm/s) 26.3±1.7* 20.3±2.5 20.9±1.2 
E/E′ Ratio 27.9±1.8* 34±2.8 33.8±2 
E′/A′ 1.14±0.06* 0.65±0.08 0.83±0.07 
LA Size (mm) 1.85±0.07* 2.39±0.11 2.47±0.04 

LVFS (%) 31.6±2.1* 25.1±2.2 28.6±1.42 

LVEF (%) 62.7±2.4* 49.9±2.53 58.7±2.1 

VCFc (circ/s)*10 6.3±0.51* 4.71±0.3 5.51±0.2 

see supplemental Table II for abbreviations. Results are presented as mean±S.E.M. *p<0.05 compared 
to all other groups.  
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Supplemental Figure I. Western blot analysis showing no detectable changes in ACE2 expression in 6 months old 
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Supplemental Figure III. Western blot analysis of phospho (threonine-177) and total extracellular signal-regulated 
kinases 1/2 (ERK 1/2) showed equivalent elevation in ERK 1/2 phosphorylation in Akita and Akita/ACE2KO hearts (A). 
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showing similar increase in Akita and Akita/ACE2KO hearts. n=8 per group except for A and F where n=5. 
PDK4=pyruvate dehydrogenase kinase 4. *p<0.05 for the main effects using two-way ANOVA. 
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Supplemental Figure IV. Western blot analysis of SERCA2a (A) and phospho (serine-16) and total phospholamban 
(B) showing reduced SERCA2 levels in Akita and Akita/ACE2KO hearts. TUNEL assay based on fluorescence 
staining of apoptotic nuclei (C) with a positive control from a post-myocardial infarction LV sample (D) and 
quantification of the percent of apoptotic nuclei (E) showing a lack of an increase in apoptosis. R.R.=Relative Ratio; 
n=5 per group. *p<0.05 for the main effects using two-way ANOVA.  
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Supplemental Figure V. Taqman real-time PCR mRNA expression analysis showing elevated expression of matrix 
metalloproteinase (MMP)-8 (A) and tissue inhibitor of matrix metalloproteinase (TIMP)-1 (B) in Akita/ACE2KO 
hearts with no detectable change in TIMP2 (C) and TIMP3 (D) mRNA expressions within groups and decreased 
mRNA expression of TIMP4 (E) in Akita/ACE2KO hearts. R.E.=Relative Expression; n=10 per group. *p<0.05 for 
the main effects and #p<0.05 for the interaction using two-way ANOVA.
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Supplemental Figure VI. Western blot analysis of myocardial AT1 receptor (A) showing increased AT1 receptor levels in 
Akita and Akita/ACE2KO hearts (n=5). Echocardiographic assessment of heart function using transmitral flow pattern (A) 
and tissue Doppler imaging (B) showing diastolic dysfunction in Akita hearts with lack of attenuation of dysfunction following 
AT1 receptor blocker, irbesartan. Quantitative evaluation of diastolic function showing increase in isovolumic relaxation time 
(IVRT) (D), A’ wave velocity (A’) (E), E/E’ ratio (F) and decrease in E’/A’ ratio (G) in Akita mice compared to WT mice, 
which was not restored after the treatment with irbesartan. Irbesratan also failed to suppress the elevated NADPH oxidase 
activity (H) and superoxide production (I) in Akita hearts. n=12 for each group except for Akita+Irbesartan group where n=10. 
*p<0.05 for the main effects interaction using two-way ANOVA; $p<0.05 compared to all other groups.
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Supplemental Figure VII. Collagenase and gelatinase activities showing increased activity in Akita/ACE2KO hearts and 
normalization of activity upon treatment with irbesartan (n=10) (A). PSR staining images (B) and morphometric analysis of 
collagen content from PSR stained-images  (n=3 sections per heart) (B) showing a restoration of the normal ECM architecture 
and increased collagen content in Akita/ACE2KO hearts in response to the AT1 receptor blocker, irbesartan (C) (n=5). 
A.U.=Arbitrary Unit; Irb=Irbesartan. $p<0.05 compared to all other groups.
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Supplemental Figure VIII. Mild hypertension in 6 months old Akita/ACE2KO mice and equivalent blood pressure lowering 
effects of irbesartan and angiotensin 1-7 (Ang 1-7) treatment in Akita/ACE2KO mice (A) based on tail-cuff systolic blood 
pressure (TC-SBP) measurements at various intervals. Echocardiographic assessment of heart function using M-mode images 
(B) showing systolic dysfunction in Akita/ACE2KO hearts with lack of a benefit in response to Ang 1-7 treatment. Quantitative 
evaluation of systolic function showing decreased LV fractional shortening (LVFS) (C), LV ejection fraction (LVEF) (D) and 
velocity of circumferential shortening (VCFc) (E) in Akita/ACE2KO hearts compared to WT hearts; Ang 1-7 treatment failed 
to normalize the systolic dysfunction in Akita/ACE2KO hearts. n=12 for each group except for Akita/ACE2KO+Ang 1-7 group 
where n=10. $p<0.05 compared to all other groups.
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