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Since its discovery in 1988, endothelin-1 (ET-1) has been 
widely studied in a diverse number of fields, including 

neurology, cardiology, development, and to a greater extent, 
nephrology and hypertension.1,2 Through the activation of its 
2 receptors, ET

A
 and ET

B
, ET-1 influences blood pressure by 

numerous mechanisms, making it an attractive target for treat-
ment of hypertension and other diseases.3–10 Although antago-
nists of the ET-1 system are highly effective in experimental 
models of hypertension and recently have been shown effec-
tive in resistant essential hypertension,7,11,12 their translation to 
the clinic has been disappointing thus far because of various 
side effects, including fluid retention/edema and liver tox-
icity.13,14 In fact, only 2 ET-1 receptor antagonists have been 
approved by the Food and Drug Administration for the use 
in humans, ambrisentan and bosentan, an ET

A
 antagonist and 

dual ET
A
/ET

B
 antagonist, respectively. The sole indication thus 

far approved is for the treatment of pulmonary hypertension.15 
However, several receptor-specific antagonists are available 
and are going through animal testing and clinical trials. This 
review will focus on the recent progress of how ET-1 affects 
blood pressure and the future use of ET-1 receptor antagonists 
for the treatment of kidney disease and hypertension.14

ET Receptors
Either ET

A
 or ET

B
 or both receptors are located on almost 

every cell type throughout the body. ET
A
 receptors are mostly 

located on vascular smooth muscle cells, and activation is not 
only normally prohypertensive through potent vasoconstric-
tion but also have significant effects to increase inflammation, 
oxidative stress, and increases in proteinuria through direct 
changes on renal glomerular permeability.12,16,17 ET

B
 recep-

tors, however, function quite the opposite, being mostly anti-
hypertensive. Vascular ET

B
 receptors are mainly located on 

the endothelium, and activation leads to vasodilation through 
enhanced nitric oxide production.18 The highest concentra-
tion of ET

B
 receptors are located on renal collecting duct cells 

and are important in long-term blood pressure regulation by 
directly inhibiting sodium uptake.18 Chronic disruption of the 
ET

B
 receptor, either genetically or pharmacologically, results 

in salt-sensitive hypertension.18 Because the hypertensive 
actions of ET

B
 receptor disruption can be abolished by ET

A
 

receptor antagonism, it is widely believed that ET
B
 receptors 

protect against ET
A
 receptor activation, and a balance between 

the 2 receptor subtypes is required for the maintenance of 
blood pressure. For greater details into the known mecha-
nisms of ET receptor activation, especially within the kidney, 
the authors direct us to a recent review by Kohan et al.18

Targeting ET in the Kidney
Depending on which part of the kidney ET-1 is produced (cor-
tex versus medulla), and which receptor is activated, renal 
ET-1 can have dramatically different effects on blood pressure. 
For instance, cortical ET-1 causes hypertension by increasing 
renal vascular resistance and reducing glomerular filtration 
rate. Furthermore, cortical ET-1 expression is upregulated 
in a number of hypertensive models.11,19,20 Even more spe-
cifically, glomerular ET

A
 activation may lead to hypertension 

by increasing inflammation through enhanced production of 
monocyte chemoattractant protein-1 and other proinflamma-
tory factors, such as cell adhesion molecules, thereby seques-
tering macrophages and lymphocytes.17 These immune cells, 
in turn, release a number of factors that act within to kidney to 
cause vasoconstriction and increases in sodium reabsorption, 
resulting in higher blood pressure. This has been proposed to 
play a role in the pathophysiology of numerous hypertensive 
states, including angiotensin II (AngII) hypertension and early 
life stress.21–24 Interestingly, ET-1 causes glomerular and vas-
cular inflammation in the absence of hypertension, suggesting 
that ET-1 antagonists could have even greater beneficial out-
comes beyond that of blood pressure reduction.17 Therefore, 
cortical ET-1 is prohypertensive by increasing renal vascular 
resistance, and directly promoting infiltration of inflammatory 
cells, specifically to the glomerulus.

In contrast to the renal cortex, renal medullary ET-1 reduces 
blood pressure by directly inhibiting sodium reabsorption 
on the collecting duct and increasing medullary blood flow 
through activation of the ET

B
 receptor. Inner medullary 

collecting ducts produce the most ET-1 within the kidney 
(≈10 times more than any other nephron segment). Known 
mediators of ET-1 effects on tubular and vasa recta function 
include increased production of nitric oxide and 20-HETE.18 
Under normal circumstances, activation of this system is 
directly dependent on the level of salt intake.25 Moreover, 
at least half of the immunoreactive ET-1 found in urine is 
derived from the renal collecting duct.26 Blockade of ET

B
 

receptors, either genetically or pharmacologically, results 
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in hypertension that is highly sensitive to salt intake.18,27 
Impairment of this pronatriuretic pathway as evidenced by 
reductions in medullary ET-1 production in hypertension is 
observed in the Dahl salt-sensitive rat.27 These data suggest 
that alterations in medullary ET

B
 receptor function could 

be an important mediator of salt-sensitive hypertension; 
however, until we understand the specific mechanisms that 
are responsible for regulating ET

B
 receptor function, it will be 

difficult to discern how to overcome salt sensitivity attributed 
to this pathway.

Sex Differences in ET-1 Signaling
It is well established that sex differences exist in the devel-
opment of cardiovascular disease and hypertension, in that 
premenopausal women are less likely to develop hyperten-
sion compared with men.28–30 There is growing evidence that 
ET-1 may play a role in the differential regulation of blood 
pressure between men and women. Some of the more com-
pelling data come from very intricate studies by Nakano and 
Pollock,31 where it was shown that direct infusion of an ET

B
 

agonist into the renal medulla increases urine flow rate and 
sodium excretion of male and female rats. Interestingly, the 
natriuretic response was only present in females when the 
endogenous ligand, ET-1, was infused. The lack of natri-
uresis in the males in response to ET-1 was attributed to an 
ET

A
-mediated reduction in medullary blood flow, thereby 

offsetting any ET
B
-mediated tubular effects. Furthermore, 

female rats also displayed a component of ET
A
-dependent 

natriuresis that was absent in males.31 Therefore, it seems 
there is an ET

A
-mediated protection against hypertension in 

female rats that does not exist in males.
A number of laboratories have provided clear evidence that 

ET-1 plays a role in AngII salt-induced hypertension because 
ET

A
 or combined ET

A
/ET

B
 antagonists can block the hyper-

tensive effects of chronic AngII infusion.32 It is known that 
female rats are not as susceptible to AngII hypertension, 
and so it has become increasingly evident that ET-1 may be 
important in the protection against salt-induced hypertension 
afforded to female rats.33 For instance, renal medullary ET

B
 

receptor function is completely lost in AngII hypertensive 
male rats, whereas still intact in females. This reduced ET

B
 

function is associated with a reduction in ET
B
 ligand binding 

in male rats, but not in female rats.6 Furthermore, blockade of 
ET

B
 receptors increases blood pressure to a more significant 

extent in female AngII hypertensive rats compared with males 
(unpublished data). Taken together, these data suggest that 
AngII, either directly or indirectly, reduces ET

B
 receptor func-

tion in male rats; however, ET
B
 receptor function in female 

rats is preserved in AngII hypertension, providing a potential 
mechanism of protection against high blood pressure.

ET in Chronic Kidney Disease
Several lines of evidence suggest that ET-1 is a major fac-
tor in the development of chronic kidney disease, and more 
specifically, contributes to hypertension, proteinuria, and 
renal inflammation in chronic kidney disease. In fact, ET-1 
directly stimulates inflammation both in the vasculature and 
in the kidney, and this occurs in the absence of hyperten-
sion.7,17,34 Recently, it was shown that an ET

A
 receptor-specific 

antagonist reduces blood pressure and proteinuria in patients 
with chronic kidney disease.34 These reductions were in addi-
tion to the normal treatments already being administered, 
including angiotensin receptor blockers and converting 
enzyme inhibitors. Therefore, although the initial insult in the 
development of chronic kidney disease may be multifacto-
rial and complex, ET-1 seems to play an important role in the 
development and progression of the disease. Thus, treatment 
with ET

A
 receptor antagonists may prove to be beneficial in 

cases where standard treatments are not sufficient, especially 
when blood pressure reduction is needed.

More recent data suggest that selective ET
A
 antagonism 

improves outcomes in diabetic nephropathy. The ASCEND 
(A Study of Cardiovascular Events iN Diabetes) study shows 
significant reductions in proteinuria among patients with dia-
betic nephropathy given the ET

A
 antagonist, avosentan; how-

ever, this study was cut short because of fluid retention among 
the treatment group. Although this was disappointing, it must 
be pointed out that the doses used in this trial were very high 
relative to the known dose–response effect on fluid retention 
observed in prior phase 2 trials and the lack of a dose–response 
effect on proteinuria.35 In fact, a much lower dose of atrasen-
tan, another selective ET

A
 antagonist, reduces albuminuria, but 

with far less peripheral edema than the ASCEND trial.18 These 
studies highlight not only the importance of the ET

A
 receptor 

in mediating kidney disease in diabetes mellitus but also the 
great potential that these drugs may have in treating renal dis-
ease associated with glomerular injury and proteinuria.

ET in the Pathogenesis of Preeclampsia
Preeclampsia is a disease of pregnancy in which the mother 
becomes hypertensive in the third trimester of gestation. It is 
thought to be caused by abnormal remodeling of uterine spiral 
arteries, leading to placental insufficiency and the release of 
factors, such as soluble fms-like tyrosine kinase-1 and tumor 
necrosis factor-α, from the placenta into the blood stream that 
result in overproduction of ET-1 by the vascular endothelium 
and the renal cortex.11,36–39 In fact, a very well-established 
model of preeclampsia in the rat, in which clamps are placed 
on the ovarian arteries and the descending aorta to reduce 
blood flow to the placenta, is characterized by hypertension 
that is abolished by ET

A
 receptor antagonism.37,40 Furthermore, 

soluble fms-like tyrosine kinase-1 and tumor necrosis factor-α 
infusion into pregnant rats result in hypertension that is also 
mediated by ET

A
 receptor activation.19,20 Although ET

A
 recep-

tor antagonists seem promising for the treatment of preg-
nancy-induced hypertension, there is the potential problem of 
teratogenicity. ET

A
 receptor knockout mice have severe devel-

opmental defects that are lethal and so it is unlikely that any 
pharmaceutical company would want to or be able to test this 
idea.18 Whether drugs can be developed that do not cross the 
placenta is not well established.

What is the Future of ET-1 Antagonists for the 
Treatment of Hypertension?

Although it is well established that ET-1 plays an important 
role in blood pressure control and alterations in this system 
can lead to hypertensive consequences, there are still no 
approved ET-1 antagonists for the treatment of arterial 
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hypertension. Several fairly large clinical trials demonstrated 
that both ET

A
 selective and combined ET

A
 and ET

B
 antagonists 

reduce blood pressure in patients with resistant essential 
hypertension.13,41 However, further development of these drugs 
for use in resistant hypertension has been thwarted for several 
potential reasons that are not all scientific. The ET

A
 antagonist, 

darusentan, produced a significant reduction in 24-hour blood 
pressure in hypertension subjects already being treated with 
at least 3 other antihypertensive medications, yet for reasons 
unclear, the primary end point of clinic blood pressure was 
not significantly different from placebo on the final day of 
the trial. This led to the decision of the company developing 
the compound, Gilead, to discontinue further development. 
This decision was particularly disappointing also because 
of the additional benefits observed in hypertensive patients, 
including reduced glycemia, improved lipid metabolism, and 
reductions in proteinuria.13,41

As previously mentioned, another important factor that 
seems to have contributed to reduced enthusiasm for develop-
ing ET blockers for the treatment of hypertension is edema. 
Fluid retention is a serious side effect that has been observed 
with all the various antagonists, but this was a particularly 
significant problem in patients with diabetic nephropathy in 
the ASCEND trial that was terminated early.35 However, lower 
doses that maintain efficacy have fewer issues with fluid reten-
tion and seem to be manageable by adjusting cotreatment with 
diuretics.18

The delicate balance between the ET
A
 and ET

B
 receptors 

is required for the normal regulation of fluid and water bal-
ance (Figure). For instance, as sodium intake is increased, 
the ET

B
 receptor becomes increasingly more important in 

blood pressure control because of its role in reducing renal 
tubular sodium reabsorption.18 Although disruption of the bal-
ance between receptor subtype activity may ultimately lead 
to hypertension, that is, loss of ET

B
 and gain of ET

A
 receptor 

activity, knowledge of the distinct function of these recep-
tors is needed when attempting to treat different forms of 
hypertension. Furthermore, there are a number of factors that 
shift balance between ET

A
 and ET

B
 receptors, including salt 

intake,12,42–46 sex,6,31,47 and AngII, and may contribute to the 
somewhat confusing results from clinical trials compared with 
the very clear findings in experimental models.

Finally, one cannot ignore the business aspects of devel-
oping new drug therapies. New drugs that may require care-
ful management and cotherapies in the early treatment phase 
may be difficult to manage when dealing with a chronic dis-
ease that is not immediately life-threatening. Both patient 
and physician compliance can be difficult when focusing on 
what can be viewed as simple blood pressure management. 
However, patients with resistant hypertension are on many 
different medications without blood pressure control and so 
the effort should be worthwhile. In addition, it is important 
to note that most of the ET antagonists are nearing the end of 
their initial patent life. Although a limited degree of exclusiv-
ity may be allowable, the earning potential may not be worth 
the costly investment required for clinical trials. The mistakes 
of the previous clinical trials are also an obstacle to overcome 
from a perceptual basis. Companies are reluctant to invest 
in drugs that have been tainted by a failed trial even when 

there are rational scientific explanations. Nonetheless, when 
one studies the history and considers the scientific specifics, 
there remains the valid possibility that the ET antagonists are 
potentially useful, life-prolonging drugs in patients experienc-
ing hypertension.
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