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Vaccines are among the most effective interventions in modern 
medicine. Ever since Edward Jenner’s first use of a vaccine against smallpox 
in 1796 (see text box), the use of vaccines has become indispensable to the 

eradication of disease. In the 20th century alone, smallpox claimed an estimated 
375 million lives, but since 1978, after the completion of a successful eradication 
campaign, not a single person has died from smallpox. Today, more than 70 vac-
cines have been licensed for use against approximately 30 microbes, sparing count-
less lives (Fig. 1A and 1B).1,2 Diseases including poliomyelitis, measles, mumps, 
rubella, and others caused an estimated 39 million infections in the 20th century 
in the United States, but vaccines have since rendered them uncommon (Table 1).3,4 
The success of this public health intervention emanates not only from the identifi-
cation of effective vaccines but also from a robust infrastructure for vaccine manu-
facturing, regulatory and safety oversight, and organized approaches to delivery. 
Vaccines represent the least expensive and most facile way to protect against devas-
tating epidemics. Society derives economic benefits by preventing hospitalization, 
avoiding long-term disability, and reducing absence from work. In brief, vaccines 
provide the most cost-effective means to save lives, preserve good health, and main-
tain a high quality of life.

Despite this legacy, infectious diseases still extract an extraordinary toll on 
humans. Vaccines have yet to realize their full potential for several reasons. First, 
effective vaccines are often not available in developing countries. The Global Alli-
ance for Vaccines and Immunization (GAVI) estimates that every year more than 
1.5 million children (3 per minute) die from vaccine-preventable diseases. Second, 
effective vaccines have not yet been developed for diseases such as human immu-
nodeficiency virus (HIV) infection, tuberculosis, and malaria, which claim the 
lives of more than 4 million people worldwide each year.5-7 For nearly all success-
ful licensed vaccines, natural immunity to infection has been shown, and the 
vaccine mimics the protective immune response. In contrast, for HIV infection, 
tuberculosis, and malaria, it has been difficult 
to show preventive immunity. Protection against 
these pathogens requires a distinct approach to 
vaccine design, based on an understanding of 
immunopathogenesis and reliance on animal 
models. In these cases, the challenge is greater, 
the development path longer, and the outcome 
less certain.

Finally, many vaccine technologies are old 
and ill-suited for a rapid response to emerging 
outbreaks. For example, influenza vaccines rely 
largely on 50-year-old technology. Current sea-
sonal influenza vaccines are not always well 

“I have received a copy of the evidence at large respecting the discovery  
of the vaccine inoculation which you have been pleased to send me, and  
for which I return you my thanks . . . . I avail myself of this occasion of 
rendering you a portion of the tribute of gratitude due to you from the 
whole human family. Medicine has never before produced any single im-
provement of such utility. Harvey’s discovery of the circulation of the blood 
was a beautiful addition to our knowledge of the animal economy, but on a 
review of the practice of medicine before and since that epoch, I do not see 
any great amelioration which has been derived from that discovery. You 
have erased from the calendar of human afflictions one of its greatest. 
Yours is the comfortable reflection that mankind can never forget that you 
have lived. Future nations will know by history only that the loathsome 
small-pox has existed and by you has been extirpated.” 
Letter to Dr. Edward Jenner from Thomas Jefferson, Monticello (May 14, 1805)
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Figure 1. Timelines for Vaccine Development and Licensure of Commercial Vaccines.

Panel A shows major milestones and advances in vaccine development and the cumulative number of licensed vaccines since the time 
of Edward Jenner’s first use of a vaccination against smallpox in 1796.1 Panel B shows the timeline for licensure of commercial vaccines 
against the indicated pathogens.2 The abbreviation mAb denotes monoclonal antibody, OspA outer surface protein A, rBS recombinant 
B subunit of cholera toxin, rDNA recombinant DNA, and WC whole-cell Vibrio cholerae O1. 
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matched and effective against circulating viral 
strains.8 Furthermore, when new strains emerged 
unexpectedly from an animal reservoir in the 
2009 influenza A (H1N1) pandemic, vaccine de-
velopers were unprepared for rapid deployment 
of a new vaccine strain. Thus, although the tri-
umphs of yesterday’s vaccines have been heart-
ening, a variety of challenges remain for the 
vaccines of tomorrow. Yet there are reasons to be 
optimistic that these challenges can be ad-
dressed.

Scien tific Discov er y  
in the Cur r en t Vaccine Er a

Structural Biology and Pathogen Entry

Progress in virology, genetics, synthetic biology, 
and biotechnology has provided a new set of tools 
to approach current-day vaccinology. Among cur-
rently licensed vaccines, the most consistent bio-
marker for vaccine efficacy has been the presence 
of antibodies that neutralize the pathogen. These 
antibodies are often elicited by natural infection 
or immunization. Our understanding of the mo-
lecular structure of viruses has led to a sophisti-
cated understanding of viral glycoproteins and the 
specific interactions of antibodies that can inac-
tivate them. The field of structural biology has 
provided new insights into how such antibodies 
protect against infection by poliomyelitis, measles, 
and influenza viruses, as well as human papillo-
mavirus (HPV), among others. This detailed knowl-
edge of the mechanism by which viral glycopro-
teins mediate entry into host cells can now be 
applied to pathogens that have not been suscep-
tible to this therapeutic approach (Fig. 2).9-11 Thus, 
an understanding of the steps related to entry and 
survival of pathogens that cause illnesses such as 
HIV type 1 (HIV-1) infection, tuberculosis, and 
malaria offers molecular targets that serve both 
to understand natural infection and to identify 
highly conserved and invariant structures as tar-
gets for broadly neutralizing antibodies.

Rational Vaccine Design

The definition of conserved sites of vulnerability 
on pathogens provides the basis for structure-
based vaccine design. Broadly neutralizing anti-
bodies often recognize highly conserved sites 
that are susceptible to antibody inactivation. Two 
pathogens, HIV-1 and influenza virus, have proved 

to be particularly informative in this regard. For 
example, analysis of the HIV-1 envelope has re-
vealed at least four discrete sites that represent 
potential targets for the designs of immunogens 
(i.e., agents capable of inducing an immune re-
sponse). These include the CD4-binding site, a gly-
cosylated site in variable regions 1 and 2 (V1V2), 
glycans on the outer domain, and the membrane 
proximal external region.

Progress in HIV-vaccine research has been 
advanced recently by the identification of excep-
tionally broad and potent neutralizing antibod-
ies to each of these sites. Some monoclonal an-
tibodies neutralize more than 90% of circulating 
viral strains,12-17 creating new opportunities for 
HIV-vaccine development. Similar progress has 
been made in the identification of broadly neu-
tralizing antibodies directed against diverse in-
fluenza viruses. At least two independent sites of 
vulnerability have been identified, one in the stem 
region of the viral spike that helps to stabilize 
the trimer, the three identical viral hemagglutinin 
glycoproteins that form this structure, and the 
other in the receptor-binding region that recog-
nizes sialic acid.18 The existence of such antibod-
ies provides conceptual support and tools that 
facilitate the development of universal influenza 
vaccines intended to protect against a wide array of 
viruses, not only the circulating seasonal strain.

Knowledge of atomic structure also defines 
viral proteins to elicit these broadly neutralizing 

Table 1. Estimated Cumulative Number of Cases of Selected Infectious 
Diseases in the United States in the 20th Century before the Advent  
of a Vaccine, as Compared with Mortality after Utilization.*

Disease
Estimated Prevaccine Cases

in 20th Century Deaths in 2002

number

Smallpox 4.81 million 0

Poliomyelitis 1.63 million 0

Diphtheria 17.60 million 2

Haemophilus influenzae 2.00 million 22

Measles 5.03 million 36

Mumps 1.52 million 236

Pertussis 1.47 million 6632

Rubella 4.77 million 20

Tetanus 0.13 million 13

* Data are from the Centers for Disease Control and Prevention3 and Roush 
and Murphy.4
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antibodies. For HIV infection, alternative forms 
of envelope glycoproteins include trimers, mono-
mers, subdomains, and specific peptide loops 
transplanted onto scaffolds.19 These candidate 
vaccines are further modified with the use of 
protein-design algorithms that are based on bio-
informatics10 in efforts to stabilize the immuno-
gen, better expose the conserved sites, and mask 
or remove undesired epitopes. Similar strategies 
are under development for influenza viruses, re-
spiratory syncytial virus, and group B meningo-
coccal strains.9,11,18,20,21

Although structure-based rational design offers 
a promising tool for developing vaccines against 
recalcitrant pathogens, substantial challenges 
remain. The proper antigenic structure will not 
necessarily provide all the information needed to 
produce a potent immunogen that will elicit an 
antibody response. Furthermore, many broadly 
neutralizing antibodies are atypical, with an 
unusually high degree of somatic mutation or long 
CDRH3 (third complementarity determining re-
gions of heavy-chain variable) regions; such anti-
bodies may not be readily elicited. Finally, a suc-
cessful vaccine candidate must be designed to bind 

the germline antibody precursor, select for the 
appropriate primary recombinational events, and 
direct its somatic mutations toward the appro-
priate mature form.19

Interactions between Host and Pathogen

Progress in the field of therapeutic monoclonal 
antibodies has facilitated the identification of ef-
fective targets and led to strategies for their suc-
cessful use in humans.22 Dozens of new antibod-
ies directed against HIV-1,18,19 influenza virus,21

respiratory syncytial virus,20 hepatitis C virus,18 and 
other microbes have identified critical viral struc-
tures and enabled structure-based vaccine design. 
Moreover, deep sequencing, the ability to generate 
millions of independent sequences of a gene 
product (e.g., immunoglobulin), has identified 
intermediates that are critical for the evolution of 
broadly neutralizing antibodies and has guided 
vaccine development.23 Millions of gene sequences 
encoding heavy and light chains (the polypeptide 
subunits of an antibody) within a single individual 
can be analyzed with the use of bioinformatics to 
trace a potential critical path for vaccine design 
(Fig. 3).23 The overarching goal is to use knowl-
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Figure 2. Structure of Viral or Bacterial Glycoproteins and Their Role in Host Invasion.

A detailed knowledge of the mechanism by which viral glycoproteins mediate entry into host cells can now be applied to pathogens that 
once were not susceptible to vaccines, including human immunodeficiency virus (HIV) (Panel A, Protein Data Bank code 3JWD), influ-
enza virus (Panel B, Protein Data Bank code 1RU7), and meningococcus (Panel C, adapted with permission from Scarselli et al.; Protein 
Data Bank code 2Y7S).9-11 MPER denotes membrane proximal external region, and V1V2 variable regions 1 and 2. The Protein Data Bank 
is accessible at www.pdb.org.
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Figure 3. Molecular Evolution of a Successful Broadly Neutralizing Antibody.

Deep sequencing (i.e., the ability to generate millions of independent sequences of a gene product) identifies criti-
cal intermediates for the evolution of broadly neutralizing antibodies and guides vaccine development. In Panel A, 
maximum-likelihood trees of heavy-chain sequences were derived from the IGHV1-2 gene that gives rise to a broadly 
neutralizing antibody, VRC01, in a representative patient, donor 74, as described previously.23 The donor 74 tree is 
rooted in the putative reverted unmutated ancestor of the heavy chain of a specific broadly neutralizing CD4-binding 
site monoclonal antibody, VRC-PG04 (as shown in Panel B, Protein Data Bank code 3SE9). Sequences from other 
donors are included in the cross-donor phylogenetic analysis. Bars representing 0.1 changes per nucleotide site are 
shown. Sequences within the shaded box include autologous VRC01-like heavy-chain sequences that neutralize HIV 
with good potency and breadth and are probably clonal relatives of VRC-PG04. Sequences highlighted in blue and 
purple represent broadly neutralizing antibodies isolated with structural probes.

The New England Journal of Medicine 
Downloaded from nejm.org by NICOLETTA TORTOLONE on February 6, 2013. For personal use only. No other uses without permission. 

 Copyright © 2013 Massachusetts Medical Society. All rights reserved. 



T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 368;6 nejm.org february 7, 2013556

edge of structural biology and antibody evolution 
to design vaccines that will elicit antibodies of 
known specificity.24

Genomewide sequencing of microbes has also 
allowed for the rational selection of targets for 
vaccine development. This approach has identi-
fied specific gene products of pathogens as vac-
cine targets. The expression and evaluation of 
these immunogens have led to the development 
of a successful vaccine for group B meningococ-
cal strains through a process known as reverse 
vaccinology.25

Immune Biomarkers of Protection

The human immune response has been ana-
lyzed with sensitive high-throughput technolo-
gies that allow for systems biologic analysis of 
gene-expression patterns in lymphocytes and in 
microbes. Such information not only identifies 
susceptible microbial targets but also has the po-
tential to define new biomarkers of protective 
immune responses, termed systems vaccinology.26

Mechanisms of protection and correlates of im-
munity can be rigorously explored in relevant 
animal models, but these properties can be de-
finitively established in humans only through 
clinical trials and postlicensure surveillance. 

Such information enables precise immune acti-
vation, minimizes unintended side effects, and 
maximizes clinical efficacy. Successful protec-
tion may require neutralizing antibodies,18 effec-
tive T-cell responses,27 or possibly a combination 
of the two.

Dendritic Cells and Adjuvants

Critical to the modulation of the immune re-
sponse is the presentation of specific antigens to 
the immune system. Dendritic cells play a central 
role in this process. Three subgroups of such cells, 
including two forms of myeloid dendritic cells 
and one plasmacytoid dendritic cell, each with 
distinct sets of toll receptors, modulate the re-
sponse to specific antigens and adjuvants. Tradi-
tional vaccines have relied on live-attenuated or 
inactivated organisms, attenuated bacteria or cap-
sules, or inactivated toxins.28,29 Progress has been 
made recently in enhancing immunity through a 
mechanistic understanding of the biology of 
dendritic cells and their response to adjuvants.30

Alternative delivery, including viruslike particles 
or structured arrays with the use of phage or 
nanoparticles, also stimulate effective immunity 
and provide powerful tools to confer protection 
for a specific pathogen (Fig. 4).
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Figure 4. The Spectrum of Costimulation from Adjuvants to Viruses.

A cellular and molecular understanding of dendritic-cell biology has facilitated improvements in vaccine-induced 
immune responses. Rather than generating responses through infection, immune stimulation can be achieved by 
increasingly complex modes of antigen presentation that range from introduction of selected proteins, with or without 
adjuvants, to gene-delivered immunogens, viruslike particles (VLP), structured arrays, or attenuated viruses. These 
approaches represent a spectrum of complexity and mimicry that elicits protective immunity without inflicting the ad-
verse consequences of natural infection. HBV denotes hepatitis B virus, HPV human papillomavirus, VEE Venezuelan 
equine encephalitis, and WT wild type.
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Modes and Sites of Vaccine Delivery

An increasing number of vaccine vectors have be-
come available to induce potent humoral or cel-
lular immunity. Gene-based delivery of vaccine 
antigens effectively elicits immune responses by 
synthesizing proteins within antigen-presenting 
cells for endogenous presentation on major his-
tocompatibility complex class I and II molecules. 
DNA-expression vectors, replication-defective vi-
ruses, or prime-boost combinations of the two31-35 
have proved to be effective in eliciting broadly 
neutralizing antibodies, especially for influenza 
viruses.36,37

Prime-boost vaccine regimens that use DNA 
and viral vectors33 have increased both humoral 
immunity and memory CD8 T-cell responses.38 For 
example, a study of a vaccine regimen consisting of 
a poxvirus vector prime and protein boost (known 
as the RV144 trial) provided evidence that the vac-
cine prevented HIV-1 infection among persons in 
Thailand.39 Eliciting immune responses at portals 
of infection (e.g., in the respiratory and intestinal 
epithelial surfaces for pathogens such as influenza 
virus and rotavirus, respectively) may generate 
more efficient mucosal immunity. Similarly, wan-
ing vaccine responses require periodic boosting at 
defined times, requiring more integrated manage-
ment of vaccines at all ages. Immunization in the 
elderly is of substantial concern because immune 
senescence can lead to a decrease in the respon-
siveness to vaccination.40

Clinic a l Tr a nsl ation  
a nd Implemen tation

Correlates of Protection and Innovative 
Clinical Trial Design

The effectiveness of vaccines can be tested only 
in clinical efficacy trials. In the past, advanced 
clinical development has been undertaken large-
ly by pharmaceutical companies in an effort to 
obtain licensure. This process is long, costly, and 
risky with respect to the likelihood of successful 
protection. For diseases with a major impact on 
human health but a limited commercial market, 
there has been little incentive for drug compa-
nies to advance these vaccines. For this reason, 
government involvement can facilitate success. 
Funding from the Australian government, for ex-
ample, catalyzed major advances for cholera and 
HPV vaccines, along with investments from the 
U.S. National Institutes of Health. Vaccine trials 

for HIV infection, tuberculosis, and malaria have 
been facilitated by clinical and translational in-
frastructure from the National Institute of Aller-
gy and Infectious Diseases, from the European 
Union, and by nonprofit organizations including 
the Bill and Melinda Gates Foundation and the 
Wellcome Trust. Similarly, the Food and Drug 
Administration (FDA), the European Medicines 
Agency, the World Health Organization, and the 
Centers for Disease Control and Prevention 
(CDC) provide regulatory, safety, and efficacy 
oversight. The infrastructure for clinical trials is 
costly but can be applied to studies of multiple 
infectious agents and can reduce impediments to 
vaccine development by facilitating logistically 
challenging trials in the developing world and 
supporting the collection of serum samples and 
lymphocytes for further scientific analysis.

New strategies are sometimes needed to fa-
cilitate licensure. For infections that are spo-
radic or intermittent, such as West Nile, Ebola, 
and Chikungunya viruses, it is often not possible 
to perform field trials to demonstrate clinical 
efficacy. To address this problem, the FDA has 
proposed the animal rule,41 according to which 
efficacy can be shown in relevant animal spe-
cies, and immune correlates of protection can be 
defined. Separate phase 2 studies are then per-
formed in humans with the aim of achieving the 
same level of immunity, and the bridged immune 
correlate is used as a criterion for licensure. Al-
though uncertainty would remain about vaccine 
efficacy in a field setting, this approach allows 
for the development of vaccines that show a high 
likelihood of protection but that otherwise would 
not be developed.

Another impediment has been the inability to 
identify promising vaccine candidates early in 
development. Definitive efficacy trials take years 
to perform, and the ability to advance efficacious 
vaccines represents a key to success for diverse 
vaccines, a problem evident in the development 
of vaccines for HIV infection, tuberculosis, and 
malaria. A potential solution is to use innovative 
testing, such as adaptive clinical trial designs.42-44 
This approach allows for the evaluation of multi-
ple vaccine candidates in parallel, looking in real 
time for early efficacy signals to select candidates 
for more complete and definitive evaluation.45 
Innovations in clinical trial design may therefore 
accelerate early decision making and increase 
the likelihood of identifying successful vaccines.
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The RV144 trial of a candidate HIV vaccine in 
Thailand showed the value of efficacy testing for 
identifying efficacy signals and correlates of im-
munity in humans. Despite the modest vaccine 
efficacy of 31%,39 investigators found that anti-
bodies to the V1V2 regions of envelope glycopro-
teins correlated inversely with the risk of infec-
tion,46 an unexpected biomarker that may guide 
product development. Thus, one way to facilitate 
implementation of successful efficacy trials is to 
identify promising candidates in phase 1 trials 
after defining relevant biomarkers through effi-
cacy trials and from relevant vaccine studies in 
animals, at the same time maintaining stable 
support and infrastructure for further testing.

From Licensure to Effective Distribution

Many vaccines are intended for use in the devel-
oping world, and the development of clinical in-
frastructure facilitates the distribution of vac-
cines in resource-poor settings. Governmental 
and international vaccination organizations such 
as GAVI and the United Nations Children’s Fund 
(UNICEF) help provide commercial vaccines in 
these settings. Another impediment is vaccine 
acceptance by the public. For example, resistance 
to vaccination has been encountered during po-
liomyelitis eradication campaigns in Nigeria, 
and unfounded concern related to autism has 
proved to be counterproductive for vaccine utili-
zation and in protecting public health in the 
United States. Increased vigilance and a con-
structive response to these concerns are needed 
to support public confidence in vaccines and op-
timize their implementation.47,48 Public–private 
partnerships can also help to address unmet 
needs, as exemplified in the development of a 
meningococcal A vaccine in Africa. Modern vac-
cine development therefore faces challenges be-
yond biology, and gaps in implementation must 
be overcome to realize their full potential.

A L o ok t o the Fu t ur e

Advances in immunology and microbiology have 
opened new avenues to improve vaccine efficacy. 
New technologies offer alternative products. For 
example, innovation in manufacturing has al-
lowed a shift from egg-based methods to cell-
based or recombinant methods, including pro-
duction from insect or plant cells. The following 
examples illustrate other promising developments.

Beyond Immunologic Mimicry

Jenner created the successful smallpox vaccine by 
building on an observation in nature: milkmaids 
who were exposed to cowpox were resistant to 
smallpox. Most licensed vaccines similarly use 
live-attenuated or inactivated natural pathogens 
(e.g., influenza, measles, mumps, poliomyelitis, 
or rubella viruses) to elicit protective immune re-
sponses. Yet increasingly, microbes that cause 
diseases such as HIV infection, tuberculosis, and 
malaria evade human immunity. To counter im-
mune evasion, subdominant immune responses 
can be generated to highly conserved invariant 
regions that are vulnerable to the immune sys-
tem (Fig. 1). Vaccines of the future will go be-
yond mimicking natural immune responses and 
must generate unnatural immunity.9 This goal 
may be achieved by identifying such targets, vali-
dating their susceptibility, and using an expanded 
arsenal of vaccines to target and expand the oth-
erwise subdominant responses to the core vul-
nerability of these microbes.

Life-Cycle Management of Vaccines

Whereas vaccines are approved for clinical use in 
the United States by the FDA, standard practices 
regarding their efficacy, clinical utility, and pub-
lic health benefit are made by the Advisory Com-
mittee on Immunization Practices (ACIP), through 
the CDC. The ACIP provides advice intended to 
reduce the incidence of vaccine-preventable dis-
eases and to increase the safety of vaccines, 
largely in pediatric populations. Yet there are un-
met vaccine needs for persons of varying ages, 
such as the HPV vaccine recommended for ado-
lescents or the shingles vaccine for the elderly. 
Immune responses also decline with age and vary 
according to previous pathogen exposure, sug-
gesting that a systematic view of vaccines be ad-
opted for different stages of life,40 a life-cycle 
management concept for vaccines that can maxi-
mize protection at all ages.

Next-Generation Vaccines

While vaccines are under development, the abili-
ty of selected antibodies to show protection in 
humans would validate the antibody target as a 
protective antigen and provide valuable informa-
tion about serum levels required for protection. 
Because techniques with respect to monoclonal 
antibodies have improved production and bio-
availability, such antibodies can be used more 
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broadly for passive prevention. Pilot studies have 
recently been considered for persons at high risk 
for HIV infection. If these studies show that such 
therapy is effective, sustained delivery mecha-
nisms could potentially be achieved with gene-
based antibody delivery. Adeno-associated viral 
vectors have shown efficacy in protecting ro-
dents, nonhuman primates, and humanized mice 
from lentiviral infection.49,50 However, wide-
spread implementation of this approach is not 
without its challenges. Notable among them is 
the need to regulate or extinguish antibody gene 
expression in the event of unanticipated adverse 
events, but should this approach succeed with 
the incorporation of such safeguards, it could 
fundamentally change strategies of immune pro-
tection and speed the delivery and expand the 
promise of vaccines.

Conclusions

Traditional vaccines have shown unprecedented 
success in preventing human infectious diseases 

and preserving public health by alleviating death 
and suffering from numerous microbial threats. 
The success of such therapies has heralded the 
arrival of a new era for vaccines. Increased under-
standing of human immunity and microbes has 
catalyzed unprecedented advances that can be 
adopted to improve public health. Despite con-
tinuing challenges, the collective effort of gov-
ernments and nonprofit organizations to expand 
the utilization of effective vaccines throughout 
the world has grown. Scientific, medical, and 
biotechnologic advances promise to improve the 
utilization of existing vaccines and expand the 
horizons for tomorrow’s vaccines.
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