namivir, which is the focus of an ongoing phase 3 trial and available on compassionate-use basis, currently appears to be the antiviral of choice for treating hospitalized or immunocompromised patients with serious influenza caused by most oseltamivir-resistant variants, including H1N1-subtype viruses harboring the H275Y mutation. However, one U.S. government–sponsored randomized trial of intravenous peramivir in hospitalized patients was recently terminated by its data and safety monitoring board because of futility with regard to reaching its primary end point. Such findings highlight the importance of developing antiviral agents with new mechanisms of action, and ongoing work on new inhibitors directed against influenza polymerase, hemagglutinin, M gene, and other targets offers promise.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

From the Epidemiology and Prevention Branch, Influenza Division, Centers for Disease Control and Prevention, Atlanta (J.B.); and the Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville (F.G.H.).

This article was published on January 23, 2013, at NEJM.org.

DOI: 10.1056/NEJMp1300375

Copyright © 2013 Massachusetts Medical Society.

The Cure for Cholera — Improving Access to Safe Water and Sanitation

Whenever epidemics of cholera occur, the global public health community is energized. Experts meet, guidelines for control are reviewed and reissued, and new and modified interventions are proposed and promoted. In the past two decades, these things happened after cholera appeared in Latin America in 1991, in the wake of the Rwandan genocide and the ensuing refugee crisis in Zaire (now Democratic Republic of Congo) in 1994, in Zimbabwe in 2008, and in October 2010, at the onset of the ongoing epidemic in Haiti (see article by Barzilay et al.). But even when it is not covered in the news or noticed by the public, cholera occurs regularly in the developing world, and the annual number of cases reported to the World Health Organization (WHO) has increased over the past few years to more than half a million cases and 7816 related deaths reported from all regions in 2011 (see map).1 Moreover, these reported numbers grossly underestimate the actual global burden of cholera: the WHO estimates that 3 million to 5 million cases and 100,000 to 200,000 deaths due to cholera occur annually.

Among the latest developments in cholera control are the recommendations that antibiotic agents be given to patients with moderate dehydration, as well as to those with severe dehydration (always in conjunction with aggressive oral or parenteral rehydration), that all patients be treated with zinc, and that use of an improved two-dose oral cholera vaccine be expanded. The vaccine has been administered successfully in pilot trials in a number of locations where cholera is endemic and, in 2012, during epidemics in Haiti and Guinea. The WHO recently agreed to establish a vaccine stockpile for emergency use to encourage greater production at lower cost. These developments are welcome additions to the anticholera armamentarium, but public health professionals know that they do not address the underlying problem.

The best intervention for long-term cholera control and, for that matter, for the control of the great majority of diarrheal diseases is the strategy that eliminated epidemic cholera from the United States and Northern Europe long before either marketed antibiotics or effective vaccines existed. The development and
maintenance of water and sewage treatment systems assured safe drinking water and safe disposal of sewage for all, keeping contaminated sewage out of water, foods, and the environment. The strategy not only eliminated cholera but also dramatically reduced mortality related to diarrheal diseases of all causes.

There has been some progress. At the global level, the proportion of people who lack sustainable access to safe drinking water has already been reduced by more than half since 1990; that was Millennium Development Goal (MDG) 7, which was achieved in advance of the target date of 2015. However, this success has been uneven and inequitable. Only 63% of people who live in the least-developed countries around the world have access to improved water supplies. In Africa, where this MDG has not been met, the proportion is 61%. For sewage disposal (or sanitation), the picture is not even this bright: at the current rate of progress, the MDG will not be met globally until 2026, and 2.5 billion people still live without even modestly improved sanitation facilities, such as a well-constructed privy. In fact, stunningly, 15% of the world’s population, more than 1 billion people, have no facilities at all and still defecate in open areas.2

Ensuring safe water and improved sanitation is a difficult proposition. The technological problems are manifold — rapid urbanization and growing megacities are outstripping the existing municipal waterworks, which cannot keep up with construction and maintenance demands. In rural areas, treating drinking water with point-of-access and point-of-use solutions, including chemical and solar disinfection and safe water storage in the home, must be further expanded as an interim measure toward providing access to safe water sources.3 The costs of improving and maintaining infrastructure in order to meet the MDGs can be daunting, depending on the technologies used; some estimates put these costs at well over $50 billion per year.4 To justify the expenditures that will be required, we need cost–utility analyses that are based on the best data possible, not just those that are readily available. These calculations should take into account the direct benefits of reducing diarrheal diseases and accompanying mortality and also other benefits, such as improved nutrition of children and lower rates of helminthic infection, hep-
Use of Health IT for Higher-Value Critical Care

Lena M. Chen, M.D., Edward H. Kennedy, M.S., Anne Sales, Ph.D., R.N., and Timothy P. Hofer, M.D.

The patient had not yet coded but was spiraling downward, prompting a request for a bed in the intensive care unit (ICU). But the ICU had no available beds. Hours passed before the decision was made that another patient could safely be “bumped” out of the unit to accommodate our patient. After the transfer, in the empty room strewn with unused bottles, procedure kits, and hospital gowns, there was a moment of peaceful quiet but weariness. The team was exhausted from worrying that the patient would code before being transferred to the ICU, from running...