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Original article

Background: air pollution may be related to adverse birth out-
comes. exposure information from land-based monitoring stations 
often suffers from limited spatial coverage. Satellite data offer an 
alternative data source for exposure assessment.
Methods: We used birth certificate data for births in connecticut and 
Massachusetts, United States (2000–2006). gestational exposure to 
PM2.5 was estimated from US environmental Protection agency mon-
itoring data and from satellite data. Satellite data were processed and 
modeled by using two methods—denoted satellite (1) and satellite 
(2)—before exposure assessment. regression models related PM2.5 
exposure to birth outcomes while controlling for several confounders. 
Birth outcomes were mean birth weight at term birth, low birth weight 
at term (<2500 g), small for gestational age (Sga, <10th percentile 
for gestational age and sex), and preterm birth (<37 weeks).
Results: Overall, the exposure assessment method modified the 
magnitude of the effect estimates of PM2.5 on birth outcomes. 
change in birth weight per interquartile range (2.41 μg/m3) increase 
in PM2.5 was −6 g (95% confidence interval = −8 to −5), −16 g (−21 
to −11), and −19 g (−23 to −15), using the monitor, satellite (1), and 
satellite (2) methods, respectively. adjusted odds ratios, based on the 
same three exposure methods, for term low birth weight were 1.01 
(0.98–1.04), 1.06 (0.97–1.16), and 1.08 (1.01–1.16); for Sga, 1.03 
(1.01–1.04), 1.06 (1.03–1.10), and 1.08 (1.04–1.11); and for preterm 
birth, 1.00 (0.99–1.02), 0.98 (0.94–1.03), and 0.99 (0.95–1.03).
Conclusions: Under exposure assessment methods, we found asso-
ciations between PM2.5 exposure and adverse birth outcomes particu-
larly for birth weight among term births and for Sga. these results 
add to the growing concerns that air pollution adversely affects infant 
health and suggest that analysis of health consequences based on 
satellite-based exposure assessment can provide additional useful 
information.

(Epidemiology 2014;25: 58–67)

Air pollution adversely affects human health.1–3 Specifi-
cally, particulate matter is associated with respiratory and 

cardiovascular disease.4,5 Maternal exposure to particulate 
matter, PM2.5 (particles with aerodynamic diameter ≤2.5 μm), 
is associated with several birth outcomes although findings 
are not completely consistent across studies.6–9 Birth out-
comes that have been assessed include birth weight, term low 
birth weight (lBW; birth weight <2,500 g for term births [ges-
tational age ≥37 weeks]), and small for gestational age (Sga; 
birth weight <10th percentile for gestational age and sex).

air pollution and birth outcomes are important topics 
of research. the economic burden in the United States associ-
ated with preterm birth, which include social and healthcare 
costs, was $26.2 billion in 2005.10 cost of hospitalization for 
lBW/preterm birth in the United States was $5.8 billion in 
2001.11 Studies have also shown that particulate matter may 
be associated with inflammation in pregnant women12,13 and 
affect fetal growth14—both of which may be detrimental to a 
normal course of pregnancy and fetal development. in addi-
tion, consequences of adverse birth outcomes beyond the peri-
natal period may include delayed development and decreased 
academic achievement15 and short stature16 in childhood, as 
well as medical/social disabilities17 and respiratory disease18 
in adulthood. given this social, economic, and health burden 
of adverse birth outcomes and the ubiquity of air pollution 
exposure, there is a need to better understand the health risks 
posed by airborne particulate matter and other environmental 
toxins/hazards.6,7,19,20

international collaborative efforts21 and several US 
studies have found associations between PM2.5 and birth 
outcomes (lBW,9 term lBW,22,23 birth weight,9,24–26 and 
Sga).24,27 However, other studies have found no or null asso-
ciations between PM2.5 and birth outcomes (term lBW,28,29 
birth weight,25,30 Sga,25 and preterm birth).7,31 in almost all 
of these studies, data for exposure assessment were obtained 
from central monitoring sites operated and maintained by 
state and national agencies, such as the US environmental 
Protection agency (ePa), primarily for regulatory purposes.

Use of data from regulatory monitors is a reasonable and 
cost-effective method to estimate exposure for air pollution 
studies; however, major challenges of this approach include 
limited spatial and temporal coverage. in the United States, 
monitors are located primarily in densely populated urban 

copyright © 2013 by lippincott Williams & Wilkins
iSSn: 1044-3983/14/2501-0058
DOi: 10.1097/eDe.0000000000000027

Submitted 11 February 2013; accepted 2 august 2013; posted 14 november 2013.
From the a School of Public Health, Yale University, new Haven, ct; bDe-

partment of environmental Health, Harvard School of Public Health, Har-
vard University, Boston, Ma; cand School of Forestry and environmental 
Studies, Yale University, new Haven, ct.

this work was supported by funding from the national institute of environ-
mental Health Sciences (r01eS016317 and r01eS019587). 

the authors report no conflicts of interest.
correspondence: ayaz Hyder, Dalla lana School of Public Health, University 

of toronto, 155 college Street, 5th floor, toronto, Ontario, canada, M5t 
3M7. e-mail: ayaz.hyder@utoronto.ca.

PM2.5 Exposure and Birth Outcomes
Use of Satellite- and Monitor-Based Data

Ayaz Hyder,a Hyung Joo Lee,b Keita Ebisu,c Petros Koutrakis,b Kathleen Belanger,a and Michelle Lee Bellc

mailto:ayaz.hyder@utoronto.ca


Epidemiology  •  Volume 25, Number 1, January 2014 Satellite and Monitor Methods for PM2.5 and Birth Outcomes

© 2013 Lippincott Williams & Wilkins www.epidem.com | 59

centers. Because monitors record air pollution levels at a spe-
cific time and location, exposure estimates for persons located 
far from monitors may not be possible or, if estimated, may be 
less reliable. Many studies limit subjects to those within a cer-
tain distance from the monitor. the choice of distance depends 
on the pollutant’s spatial heterogeneity, temporal correlation 
in pollutant levels nearby monitors, and other regional-scale 
characteristics (eg, industry type, population density, and traf-
fic patterns). temporal coverage is another limitation of data 
from existing monitoring systems; for example, in the ePa’s 
air Quality System, frequency of data collection can vary by 
site, pollutant, time of year, and start date of measurement. 
Particles are often measured every 3 or 6 days. therefore, it is 
not uncommon for data from central monitoring systems to be 
missing or unreliable. given these considerations, alternative 
methods for exposure assessment are needed.

air quality modeling, land-use regression models, and 
satellite-based predictions are some of the methodologies 
being developed to predict air pollution levels in epidemiol-
ogy studies.32 For birth outcomes studies, the first two meth-
odologies are more common22,23,33–36 (although see the article 
by Kloog and colleagues26 for a satellite-based approach). 
Our group37,38 recently produced estimates of PM2.5 levels 
that have higher predictability than current land-use regres-
sion models and satellite methods. Specifically, novel methods 
were developed for calibrating satellite-based measurements 
of aerosol optical depth (a measure of light extinction due to 
aerosols in the atmospheric column),38 and statistical model-
ing was used to address missing data (due to cloud cover) in 
these calibrated data.37 From these studies, we had access to 
PM2.5 estimates that were highly predictive of PM2.5 measure-
ments (R2 = 0.88 for cross-validated model, as reported by 
lee et al37). low predictability between modeled and moni-
tor-based values likely introduces greater uncertainty in health 
effect estimates.

We investigated PM2.5 and birth outcomes by using a 
traditional exposure approach (existing monitoring data) and 
an emerging method (modeled estimates based on satellite 
data). We consider how these relations are affected by includ-
ing observations with satellite-based exposures, but no mon-
itor-based exposure estimates to assess the potential added 
value of satellite-based estimates for exposure.

METHODS

Data and Outcome Assessment
We obtained detailed birth certificate data for all 

births in connecticut and Massachusetts from 2000 to 2006 
(n = 834,332). We excluded births that were conceived before 
the year 2000 because PM2.5 exposure data from satellite meth-
ods were not yet available. the birth certificate data included 
maternal characteristics (residential address, age, education, 
parity, tobacco use, marital status, and race/ethnicity), birth 
characteristics (date of last menstrual period, prenatal care, 

and type of birth), and baby’s characteristics (date of birth, 
birth weight, type of birth, and gestational age).

We excluded births that were missing residential address 
(2%), nonsingleton deliveries (5%), birth weight <1,000 g or 
>5,500 g (1%), and births with implausible gestational age–
birth weight combinations (0.02%). these criteria have been 
applied in similar research.39 Births with gestational age <20 
weeks or >46 weeks were excluded (0.3%). clinical gesta-
tional age was used in all analyses; when missing, we used the 
calculated gestational age when available.

For analysis of mean birth weight and term lBW, only 
term births (gestational age ≥37 weeks) were included. Pre-
term births were those with gestational age <37 weeks. We 
classified births as Sga if birth weight was <10th percentile 
value for gestational age and sex according to US data-based 
cutoff values (restricted to gestational ages 22 to 44 weeks).40 
therefore, we limited the Sga analysis to births with ges-
tational age in this range. the final number of observations 
included in each model differed based on the health outcome 
and exposure assessment method.

We used date of birth and gestational age to establish 
start and end dates of gestational exposure and to estimate 
exposure during the entire pregnancy and each trimester. tri-
mesters were defined as 1 to 13 weeks, 14 to 26 weeks, and 
27 weeks until birth. trimester-specific apparent temperature 
was estimated by using data from the national climatic Data 
center.41

Exposure Assessment
two methods were used for PM2.5 exposure assessment: 

monitor data and modeled estimates based on satellite data. 
Monitor data were obtained from the ePa’s air Quality Sys-
tem system from 2000 to 2006 (Figure). We omitted moni-
tor data with qualifier codes indicating uncommon, natural or 
anthropogenic events, and data with quality assurance issues, 
based on ePa flag codes. We used the closest monitor to 
mothers’ residence with a cutoff distance of 50 km, based on 
our previous work (K ebisu, unpublished data). the average 
distance between monitor and mothers’ location was 14 km 
(standard deviation = 11 km; 25% quartile = 5 km; and 75% 
quartile = 21 km). PM2.5 values were calculated for each of 
these monitors and for each week of pregnancy. this process 
avoids biasing exposure estimates because some monitors did 
not provide concentration data for the entire study period. 
analysis excluded births with exposure data for fewer than 
75% of weeks in each trimester. the closest monitor to the 
mother’s residence that met these criteria was used to estimate 
overall and trimester-specific exposure by averaging weekly 
values.

Satellite-based PM2.5 predictions were modeled under 
two related yet slightly different methods, which we denote 
satellite (1) and satellite (2) (described below), using mea-
surements from the Moderate resolution imaging Spectro-
radiometer (MODiS) instrument onboard terra and aqua 



Hyder et al Epidemiology  •  Volume 25, Number 1, January 2014

60 | www.epidem.com © 2013 Lippincott Williams & Wilkins

satellites. Both modeling approaches produced daily PM2.5 
concentrations for each 10 × 10 km grid cell over our study 
area (Figure). these data were available only for a period of 
2000–2006. Satellite data consisting of aerosol optical depth 
(aOD) measurements were obtained from national aeronau-
tics and Space administration. Other researchers42,43 have 
used aOD measurements directly to estimate PM2.5 (via a 
functional relation between aOD and PM2.5). We elected not 
to do so because of lack of high predictability and because of 
missing data due to cloud cover.

to address these two limitations, we used a calibration 
and modeling approach, which has been described earlier.37,38 
in brief, we start by using a mixed-effects model to generate 
relations between each day of observed PM2.5 levels in north-
east United States and aOD values corresponding to monitors’ 
locations. in the mixed effects model, fixed effects explained 
the average intercept and the slope of the PM2.5–aOD slope 
for the entire study period, and random effects accounted for 
daily variability of PM2.5–aOD relations. this daily aOD cal-
ibration approach substantially enhanced the PM2.5-predictive 
power of aOD, rendering it a robust predictor of PM2.5. next, 
we performed a cluster analysis by using the K-means method, 
which breaks up data into K clusters (K = 9 for the satellite 
(1) method and K = 8 for the satellite (2) method), such that 
the data point in each cluster is closest to the mean of the clus-
ter.44 this method of classification allowed us to identify the 
set of days with a similar spatial pattern of PM2.5. the cluster 
analysis under the satellite (1) method was based on PM2.5 

concentration differences between observed PM2.5 values and 
regional PM2.5 values (ie, daily averages of all available PM2.5 
measurements over the study region on a given day), whereas 
under the satellite (2) method we used actual observed PM2.5 
values.

another difference between the two satellite methods 
was in how we predicted PM2.5 values for days with missing 
aOD data. in the satellite (1) method, we formulated a general 
additive model for each cluster, in which predicted PM2.5 con-
centrations from the mixed effects model were regressed on 
regional PM2.5 levels and a spatial smooth function of latitude 
and longitude. in this study, regional PM2.5 accounted for daily 
variability in PM2.5 levels. in this way, we generated a single 
spatial surface of PM2.5 concentrations for each cluster and 
predicted PM2.5 concentrations for days with missing data. in 
contrast, in the satellite (2) method, we assumed that relations 
between predicted (from mixed effects model) and regional 
PM2.5 concentrations in each grid cell were constant for each 
cluster. thus, we derived cluster- and grid-specific relations 
by using regression models and estimated all the missing 
PM2.5 concentrations. Both approaches produced PM2.5 esti-
mates that were highly predictive, and therefore better suited 
to health effects studies. in summary, the main differences 
between the two satellite methods were in how observed data 
were clustered to identify spatiotemporal patterns, and how 
each cluster of data was used to predict PM2.5. the satellite (2) 
approach provided greater spatial heterogeneity in predicted 
PM2.5 values.

FIGURE. Map  of  the  study  area, 
which  includes counties  in Connecti-
cut  and  Massachusetts  (thick  black 
lines).  Environmental  Protection 
Agency–Air  Quality  System monitor-
ing sites located within 50 km of the 
state  boundary  are  shown  in  grey 
triangles. Grid cells  (10 × 10 km; thin 
black  lines)  for  satellite methods  are 
overlaid on the study area. Note that 
not  all  monitors  and  grid  cells  were 
used in exposure assessment because 
of data quality and availability issues.
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a recent birth outcomes study in eastern Massachusetts 
used a different method to estimate PM2.5 from satellite data.26 
the main differences relate to calibration and modeling of raw 
satellite data in terms of the modeling approach and the use of 
different variables in the calibration and modeling steps.

as with exposures based on monitor data, weekly expo-
sures were used to calculate trimester-specific and overall 
exposure during gestation for each birth based on mother’s 
residence. Satellite data were unavailable for grid cells con-
taining mostly water (0.5% and 3% of births in connecticut 
and Massachusetts, respectively). For these observations, we 
used satellite data from the closest grid cell (based on grid 
centroid-to-residence ≤10 km). We excluded subjects with a 
residential address on islands because satellite estimates were 
unavailable for such geographic areas.

Statistical Analysis
We formulated several models based on the combina-

tion of data used for exposure assessment (monitor, satellite 
[1], or satellite [2]; and the included observations) (subset of 
births with exposure estimates under both land-based moni-
tors and satellite methods [Joint], or all subjects with exposure 
estimates for that exposure method [all]).

For example, a model labeled “satellite (2), all” includes 
all subjects with estimated PM2.5 exposure based on the sec-
ond method of modeling satellite data. note that all “Joint” 
models have the same sample size, whereas “all” models 
have different sample sizes. “satellite (1)” and “satellite (2)” 
models had identical timeframe/spatial resolution (ie, same 
subjects). each model was applied to the four birth outcomes 
separately. this approach allows evaluation of the association 
between exposure method and the health effects for the same 
study population. in addition, we can evaluate how inclusion 
of subjects with exposure estimates for one exposure method 
but not another modifies effect estimates.

We used logistic regression for binary outcomes (term 
lBW, Sga, preterm birth) and linear regression for the con-
tinuous outcome birth weight. We controlled for the following 
variables: mother’s age (<20, 20–24, 25–29, 30–34, 35–40, or 
≥40 years); marital status (married or not married); mother’s 
education (<12, 12, 13–15, or ≥16 years); mother’s race/eth-
nicity (white/non-Hispanic, black/non-Hispanic, asian/non-
Hispanic, Hispanic/other-Hispanic, other/non-Hispanic, or 
unknown ethnicity); prenatal care (adequacy of Prenatal care 
Utilization index45: unknown/missing, inadequate, intermedi-
ate, adequate [basic or intensive]); smoking (none, 1–9, 10–20, 
or >20 cigarettes per day); type of birth (vaginal/vaginal after 
cesarean birth vs. cesarean); parity (0, 1, 2, or ≥3 previous 
live births); season of conception (winter, spring, summer, or 
fall); medical risk factors (0 or ≥1 factors, eg, anemia); medi-
cal risk caused by previous preterm birth or Sga (yes or no); 
baby’s sex (boy or girl); and gestational age (continuous). all 
models controlled for year of conception, trimester-specific 
apparent temperature, and state of residence (connecticut or 

Massachusetts). We also did a sensitivity analysis by using 
mean instead of apparent temperature. For each outcome, 
we evaluated the effects of overall gestational exposure and 
of first-, second-, and third-trimester exposure. For trimester 
models, we included residuals from regressing exposure esti-
mates from the trimester of interest against other trimesters to 
control for correlation in exposures among trimesters, similar 
to methods used previously.9

RESULTS
lBW was observed in 2% of all term births (n = 628,131), 

with overall mean birth weight of 3,449 g (standard deviation 
472 g). ten percent (n = 662,921) of infants were Sga and 6% 
(n = 656,769) were preterm (table 1). the sample size for pre-
term births reflected our exclusion of all births occurring 37 
weeks before 31 December 2006 (end of study period). this 
exclusion rule was necessary to ensure that all births in 2006 
had an equal chance of being counted as a preterm birth. For 
Sga, we included only births with gestational age 22 to 44 
weeks, which resulted in different sample sizes for Sga and 
lBW. Descriptive statistics on other covariates were based on 
all eligible births (n = 662,921; table 1). Mothers were mainly 
white with non-Hispanic ethnicity (68%), educated (41% 
with ≥16 years education), and married (70%). For a majority 
of births, prenatal care was considered adequate (82%), and 
the method of delivery was vaginal or vaginal after cesarean 
(73%).

Satellite PM2.5 exposures were estimated for 367 10 × 10 
km grid cells, whereas there were 98 ePa-air Quality Sys-
tem monitors providing point measurements. Monitoring sites 
were located within connecticut or Massachusetts or within 
50 km of their borders. Mean PM2.5 exposure during the entire 
pregnancy based on each method of exposure assessment 
(monitor, satellite [1], and satellite [2]) was similar—11.9, 
11.2, and 11.4 μg/m3, respectively, but differed in other statis-
tical properties (table 2). Satellite-based exposure estimates 
tended to have smaller standard deviations, narrower ranges, 
and smaller interquartile ranges (iQrs). these differences 
were also apparent in trimester-level estimates, where confi-
dence intervals (cis) for the third trimester were wider than 
for other trimesters (table 2). these wider intervals may be 
due to variable lengths of exposure in births that reached the 
third trimester. For all models, we reported results using an 
increment of 2.41 μg/m3 (iQr of exposure during gestation 
using monitor-based data), to make effect estimates compa-
rable across analyses.

gestational PM2.5 exposure was associated somewhat 
differently with the various birth outcomes (table 3). term 
lBW and Sga were generally associated with PM2.5 across 
all exposure methods although more strongly with satellite 
data, and especially satellite (2) data. PM2.5 exposures were 
linked with increased risk of term lBW only in the first tri-
mester, whereas Sga was linked with exposures in all trimes-
ters (although more weakly) (table 4). a consistent gradient 



Hyder et al Epidemiology  •  Volume 25, Number 1, January 2014

62 | www.epidem.com © 2013 Lippincott Williams & Wilkins

in risk by exposure method was observed in the models across 
most trimesters (table 3). risk of term lBW per iQr increase 
in PM2.5 was 1% (95% ci = −0.02 to 4), 6% (−0.03 to 16), 
and 8% (1–16), using monitor, satellite (1), and satellite (2) 
methods, respectively. the change in birth weight was nega-
tively associated with PM2.5 exposure, regardless of window 
of exposure. the change in birth weight per iQr increase in 
PM2.5 was −6 g (95% ci = −8 to −5) using the monitor method 
and about three times that using either satellite method. the 
risk of Sga when using satellite methods was 6% (3 to 10) for 
satellite (1) and 8% (4–11) for satellite (2). these risk values 
are about twice that using the monitor method (3% [1–4]). 
For preterm birth, risks were marginally higher risk for some 
exposure methods, but with no clear excess either overall or 
by trimester. Our results were not sensitive to using mean 
instead of apparent temperature (results not shown). Models 
with satellite-based exposure estimates tended to have much 
wider cis (table 3).

DISCUSSION
air pollution has previously been associated with birth 

outcomes using various exposure methods.6,8 We assessed 
whether associations between PM2.5 and birth outcomes were 
affected by use of monitor or satellite exposure methods. as 
satellite data become more readily available, their application 
for exposure assessment will likely become more common, 
and studies are needed to evaluate this alternative exposure 
method.

We are aware of three health studies that have used mod-
eled satellite-based PM2.5 estimates.26,46,47 One of these stud-
ies, which looked at acute myocardial infarctions,46 used the 
same exposure model as ours.48 in the birth outcomes study,25 
the authors used land-use and traffic density data and satel-
lite data to model PM2.5 in Western Massachusetts. they used 
birth certificate data (2000–2008) and estimated risk of pre-
term birth and change in birth weight by using inclusion cri-
teria similar to ours: their results for change in birth weight 
are comparable with those of ours. in addition, we looked at a 

TABLE 1. Descriptive Statistics of Maternal and Child 
Characteristics and Birth Outcomes from Birth Certificate 
Data in Connecticut and Massachusetts (2000–2006)

Variables No. (%)a

Birth outcomes

  Birth weight (in grams, for term births only); mean (SD) 3,449 (472)

  term low birth weight (term births <2,500 g) 11,641 (2)

  Preterm birth (gestational age <37 weeks) 41,868 (6)

  Small for gestational age (birth weight <10th percentile for 

 gestational age and sex)

67,842 (10)

Baby’s sex

  Boy 338,957 (51)

  girl 323,964 (49)

type of birth

  Vaginal/vaginal birth after cesarean birth 482,358 (73)

  cesarean/repeated cesarean 180,563 (27)

adequacy of Prenatal care Utilization index45

  Unknown/missing 6,518 (1)

  inadequate 51,826 (8)

  intermediate 57,471 (9)

  adequate (basic or intensive) 547,106 (82)

average number of cigarettes per day

  none 613,155 (93)

  1–9 28,025 (4)

  10–20 21,025 (3)

  >20 716 (0.1)

Mother’s education (yrs)

  <12 82,526 (12)

  12 165,549 (25)

  13–15 142,460 (22)

  ≥16 272,386 (41)

Mother’s race/ethnicity

  White/non-Hispanic 448,330 (68)

  Black/non-Hispanic 60,463 (9)

  asian/non-Hispanic 40,698 (6)

  Hispanic/other-Hispanic 99,211 (15)

  Other/non-Hispanic or unknown ethnicity 14,219 (2)

Mother’s marital status

  Married 464,155 (70)

  Unmarried 198,766 (30)

Mother’s age (yrs)

  <20 43,535 (6)

  20–24 106,454 (16)

  25–29 156,967 (23)

  30–34 210,351 (31)

  35–39 119,400 (18)

  ≥40 26,214 (4)

Season and weather

Season of conception

  Winter 173,499 (26)

  Spring 160,963 (24)

  Summer 162,735 (25)

  Fall 165,724 (25)

(Continued)

apparent temperature (°c); mean (SD) 48.2 (7.2)

Parity (number of previous births)

  0 290,134 (44)

  1 228,434 (34)

  2 97,127 (15)

  ≥3 47,226 (7)

Previous preterm birth or small for gestational age birth 6,090 (1)

gestational age (weeks); mean (SD) 39.0 ± 1.6

n = 662,921 for all variables except where limited to births in a specific ranges of 
gestational length (eg, term births or small for gestational age). Percentages are rounded 
to whole numbers.

aexcept where otherwise specified.

TABLE 1. (Continued)

Variables No. (%)a
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different and wider geographic region, compared satellite- and 
monitor-based exposures in our model, and looked at a wider 
range of birth outcomes (including Sga and lBW). Unlike 
that earlier study, we did not find an association between PM2.5 
and preterm birth. However, our results are not directly com-
parable with that study because of differences in location, 
time period, modeling of satellite-based exposure estimates, 
and model covariates. the previous study also did not com-
pare results for risk estimates using monitors; that was done 
in another study47 although not for birth outcomes. Our esti-
mates of risk (for term lBW and Sga) and change in birth 
weight are comparable with previous studies using monitor-
based exposures.9,22,24,27,49

the magnitude of the association between PM2.5 and 
birth outcomes tended to be higher when using the satellite (2) 
exposure method (table 3). this could relate to greater vari-
ability in PM2.5 measurements based on monitors rather than 
satellite methods. greater variability may attenuate associa-
tions toward the null due to exposure misclassification. in other 
words, areas with very high or low PM2.5 estimates could influ-
ence the fitting of the model to the data and thus affect risk esti-
mates, more than if PM2.5 estimates were less spatially varied. 
therefore, future research is needed on appropriate character-
ization of spatial heterogeneity for PM2.5. this is especially 
true for differentiation of risk estimates based on various expo-
sure methods (eg, satellite, land-use regression models).

Satellite data can overcome some disadvantages of using 
monitor data for exposure assessment in health studies. analy-
sis of monitor data may lead to exposure misclassification and 
selection bias because sites are typically located for regulatory 
rather than research purposes. Monitors may not provide full 
coverage or represent population-based exposure.50 also, US 
populations at varying distances from monitors differ in other 

ways.51,52 For example, populations living in census tracts with a 
monitor tended to be characterized by having more non-Hispanic 
blacks, lower education, lower income, greater unemployment, 
and higher poverty.52 another limitation of monitor data is that 
monitors may be discontinued or temporarily out of operation 
(eg, under maintenance). For many pollutants (eg, PM2.5, ozone), 
measures are not taken daily, which limits temporal coverage.

in contrast, satellite data provide near-complete spa-
tial coverage of daily pollutant levels. even so, uncertainty 
exists in the unprocessed satellite data and its calibration to 
observed data. also, uncertainty may be introduced by the 
statistical procedure used to estimate pollutant levels for days 
when satellite data are missing due to cloud cover. Satellite 
data provide near-complete spatial coverage because exposure 
estimates are not possible to calculate for grid cells containing 
a substantial fraction of water (eg, lakes and coastal regions).53 
also, coastal populations may have different demographic 
compositions (eg, socioeconomic status) than populations 
living inland. a potential solution would be to use satellite 
data with finer spatial resolution. another important issue for 
studies of air pollution and birth outcomes is the relevant ges-
tational window of exposure. although time-series analyses 
controlling for season of conception have been used to iden-
tify the relevant exposure window, the daily time scale of the 
satellite data is especially suited for such analyses.

Satellite methods provide a novel way to estimate 
health risks associated with air pollution in rural areas with 
few monitors. also, it may be possible to investigate rural–
urban differences in risk estimates. rural populations differ 
from urban populations in terms of health and demographic 
and socioeconomic characteristics. US studies have suggested 
that premature mortality, obesity, and cardiovascular disease 
were higher in rural areas than in urban or semi-urban areas, 

TABLE 2. Descriptive Statistics for Exposure Data for PM2.5 (μg/m3), Based on Three Exposure Methods

Duration of Exposure Mean SD Min Lower Quartile Upper Quartile Max IQR

Monitor

entire pregnancy 11.91 1.89 4.02 10.66 13.07 19.97 2.41

  First trimester 12.03 2.66 3.24 10.19 13.66 24.50 3.46

  Second trimester 11.93 2.58 3.24 10.13 13.57 24.50 3.44

  third trimester 11.81 2.55 0.50 10.02 13.58 43.30 3.56

Satellite (1)a

entire pregnancy 11.15 0.75 8.77 10.66 11.70 13.75 1.04

  First trimester 11.17 1.48 6.76 10.20 12.03 15.84 1.83

  Second trimester 11.16 1.49 6.75 10.19 12.04 15.75 1.86

  third trimester 11.11 1.59 4.09 10.08 12.10 24.63 2.02

Satellite (2)a

entire pregnancy 11.36 0.85 8.82 10.79 11.92 14.81 1.12

  First trimester 11.38 1.59 6.73 10.28 12.34 17.09 2.06

  Second trimester 11.36 1.60 6.71 10.27 12.35 17.09 2.08

  third trimester 11.32 1.70 4.23 10.18 12.40 31.59 2.22

aSee main text for differences in satellite(1) and satellite(2).
iQr indicates interquartile range.
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and that these disparities were related to urban–rural differ-
ences in socioeconomic and demographic characteristics.54,55 
the air pollutant mixture in rural areas may differ from urban 
areas (eg, due to industry type, traffic patterns). therefore, 
it is important to include rural populations in health effects 
studies. traditional methods of assessing exposure focus more 
heavily on urban populations, excluding these rural popula-
tions. the use of satellite methods may allow study of broader 
scientific questions (ie, whether effect estimates differ by rural 
vs. urban populations), in addition to increasing sample size 
through higher temporal and spatial coverage.

Several biologic mechanisms may be responsible for the 
association between air pollution exposure and adverse birth 
outcomes. Preterm birth may occur because of environmen-
tal disruptors of the endocrine systems that control parturi-
tion,56 activation of molecular and cellular pathways involved 
in uterine contraction and quiescence through toxicant-
induced inflammation response,12 and interaction of exter-
nal compounds with biochemical pathways responsible for 
the breakdown of the cervical matrix.56 Birth weight–related 
outcomes (birth weight and term lBW and Sga) associ-
ated with PM2.5 exposure may be due to mechanisms similar 
to those previously found for the effects of maternal smok-
ing on fetal growth and development. Such mechanisms may 
include oxidative stress, vascular resistance in the placenta, 
and fetal exposure to toxic chemicals.57,58 even though expo-
sure to maternal smoking may be associated with a greater 
decrease in birth weight than PM2.5 exposure (150–300 g58 vs. 
19 g in our study under the satellite (2) method), the follow-
ing should be kept in mind. First, the population for maternal 
smoking exposure is much smaller than for PM2.5 exposure. 
Second, it is much more difficult for individuals to avoid PM2.5 
exposure than maternal smoking. Other potential mechanisms 
involving particulate matter exposure may include, (1) mito-
chondrial dysfunction (in the placenta) in response to PM10 
exposure, which may affect nutrient transfer and growth of 
the placenta and, in turn, fetal growth and development,59 and 
(2) the production of reactive oxygen species as a detoxifica-
tion response to maternal smoking or exposure to air pollution 
further increasing the probability of Dna damage during fetal 
development and growth. Ongoing animal and human stud-
ies, including epigenetic studies looking at gene–environment 
interactions, continue to improve our limited understanding 
of these and other biologic mechanisms for adverse birth 
outcomes.60–62

there were several limitations of our study. First, smok-
ing habits, alcohol consumption, prenatal care, and maternal 
risk data on birth certificates are less reliable than from other 
data sources such as questionnaires and cohort data.63 Despite 
these data reliability issues, birth certificate data are frequently 
used in health effects studies of air pollution and birth outcomes 
because they provided reliable estimates of birth weight and 
date of birth, both of which are essential for evaluating several 
birth outcomes.8,9,22,26,64 Second, our data were limited in their 
spatial resolution. We excluded mothers living more than 50 km 
from monitors, which may have introduced exposure misclas-
sification because of spatial heterogeneity of pollutants (ie, the 
10 × 10 km resolution is a necessary limitation of satellite data 
rather than being selected as an appropriate scale at which to 
predict PM2.5 levels). related to this, even though satellite data 
were calibrated to monitor data, grid cells where these monitors 
were located may be better predictors of PM2.5 levels than grid 
cells without monitors (eg, rural areas, suburbs). Finally, method 
of exposure assessment—monitor- or satellite-based— neither 
captures individual-level exposures nor identifies sources of 

TABLE 3. Adjusteda Association Between PM2.5 Exposure 
over the Entire Pregnancy and Birth Outcomes, by Exposure 
Data Source and by Type of Birth Outcomes

Modelb

No.Data Source Observations

OR of Term LBW

Monitor all 1.01 (0.98 to 1.04) 619,675

Joint 1.01 (0.98 to 1.04) 609,813

Satellite (1) all 1.07 (0.99 to 1.17) 628,131

Joint 1.06 (0.97 to 1.16) 609,813

Satellite (2) all 1.09 (1.02 to 1.17) 628,131

Joint 1.08 (1.01 to 1.16) 609,813

OR of SGA

Monitor all 1.03 (1.01 to 1.04) 654,193

Joint 1.03 (1.01 to 1.04) 643,839

Satellite (1) all 1.07 (1.03 to 1.11) 662,921

Joint 1.06 (1.03 to 1.10) 643,839

Satellite (2) all 1.08 (1.05 to 1.11) 662,921

Joint 1.08 (1.04 to 1.11) 643,839

Change in birth weight (g)

Monitor all −6.2 (−7.9 to −4.6) 619,675

Joint −6.2 (−7.9 to −4.6) 609,813

Satellite (1) all −14.6 (−19.4 to −9.8) 628,131

Joint −15.7 (−20.5 to −10.8) 609,813

Satellite (2) all −19.1 (−23.1 to −15.1) 628,131

Joint −19.0 (−23.0 to −14.9) 609,813

OR of preterm birth

Monitor all 1.00 (0.99 to 1.02) 647,942

Joint 1.00 (0.99 to 1.02) 637,586

Satellite (1) all 0.98 (0.93 to 1.02) 656,769

Joint 0.98 (0.94 to 1.03) 637,586

Satellite (2) all 1.00 (0.96 to 1.04) 656,769

Joint 0.99 (0.95 to 1.03) 637,586

effect estimates (95% ci) are reported as per interquartile range (2.41 μg/m3) 
increase in PM2.5.

aall models controlled for the following confounders such as mother’s age, marital 
status, education, race/ethnicity, prenatal care, smoking, type of birth, parity, season of 
conception, medical risk factors, medical risk caused by previous preterm birth and/
or Sga, baby’s sex, and gestational length. gestational length and baby’s sex were not 
included in the models for Sga. gestational length was not included in the models for 
preterm birth.

bSee main text for explanation of models.
ci indicates confidence interval; lBW, low birth weight; Or, odds ratio; Sga, small 

for gestational age.
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air pollution. this drawback is common to most air pollution 
and health studies; possible solutions include using personal 
monitors for exposure assessment and simulation models (eg, 
regional air quality modeling) or source apportionment.

in summary, our study compares associations between 
PM2.5 exposure and birth outcomes, using a traditional data 
source for exposure assessment (land-based monitoring sta-
tions) and a new and emerging exposure method (satellite data 
that have been calibrated and modeled specifically for use in 
health effects studies). as satellite data continue to improve in 
their calibration, modeling, and spatial resolution, they will 
become increasingly useful in health effects studies. Future 
studies should consider the spatial resolution of satellite 
data in the context of the specific pollutant under investiga-
tion (eg, satellite data for some pollutants are available but at 
very large spatial resolution [100 km or more]), and should 

compare associations based on multiple sources of data for 
exposure assessment so that our results are robust and more 
useful for policy makers in environmental risk assessments, 
as each exposure method has its own strengths and challenges.
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