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Real operative experience with human 
feedback and assessment in the operating 
room (OR) should remain the gold 
standard surgical training modality, but 
OR experience can be augmented by 
simulations that deconstruct operations 
into component tasks. Increasing the 
training of surgeons in simulated 
environments is, however, currently 
constrained by a reimbursement model 
that rewards faculty assessor time only 
in the clinical setting. In this study, we 
attempted to address this challenge by 
creating a low-cost, automated assessment 
tool for the simulated environment that 
could help prepare residents to optimize 
the training opportunities in the actual 
OR and reduce the teaching of basic 
open surgical skills on real patients.1 We 
developed a motion tracking device to 

attach to the surgeon’s dominant hand 
to capture the motion patterns during 
a simulated surgical task. Low-fidelity 
bench models are low-cost simulations of 
surgical technique that can maintain the 
real haptic experience.2 Automating the 
assessment and feedback of bench model 
simulated tasks would reduce the need for 
and expense of direct observation by an 
expert and increase educational efficiency.

Previous surgical hand motion tracking 
devices were expensive and used the 
number of hand movements as an 
assessment metric that was highly 
correlated to total task time but was 
not a measure of the quality of the 
movements.3–6 These limitations have 
prevented widespread adoption of 
such tracking devices. The only motion 
economy metric in widespread use is 
total task time, which needs to be used 
alongside a measure of quality/error 
such as in the summative assessment 
of minimally invasive skills using the 
fundamentals of laparoscopic surgery 
tool (which requires human proctoring).7

Observation has been the main form of 
assessment in the apprenticeship model 
of surgical training: Experienced surgeons 

recognize and assess trainee surgeons’ 
expertise by observing them operate.8 
If expert surgeons can use this pattern 
recognition, then, in theory, computers 
programmed with pattern recognition 
algorithms could also recognize and classify 
the different patterns of hand movements 
that separate the expert from the novice 
surgeon. It may, therefore, be useful to 
look at hand motion patterns, rather 
than economy of motion, to evaluate 
the quality of the surgeon’s movements.9 
Computer pattern recognition algorithms 
currently have applications in speech 
recognition and in image recognition 
(e.g., handwriting, face recognition).10 
Machine learning is a branch of artificial 
intelligence, and a popular and powerful 
nonparametric supervised learning 
algorithm used in pattern recognition is 
the Support Vector Machine (SVM).11 
We have previously detected a difference 
in pattern structure between the hand 
movements of novice and expert surgeons 
and quantified this difference by how easily 
the patterns could be compressed using the 
Lempel–Ziv (LZ) complexity metric.12,13 
In a prior study, senior surgeons had more 
complex hand motion patterns during an 
open surgical task.12
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Abstract

Purpose
To test the hypothesis that machine 
learning algorithms increase the predictive 
power to classify surgical expertise using 
surgeons’ hand motion patterns.

Method
In 2012 at the University of North 
Carolina at Chapel Hill, 14 surgical 
attendings and 10 first- and second-year 
surgical residents each performed two 
bench model venous anastomoses. During 
the simulated tasks, the participants wore 
an inertial measurement unit on the 
dorsum of their dominant (right) hand 
to capture their hand motion patterns. 
The pattern from each bench model 
task performed was preprocessed into 

a symbolic time series and labeled as 
expert (attending) or novice (resident). 
The labeled hand motion patterns were 
processed and used to train a Support 
Vector Machine (SVM) classification 
algorithm. The trained algorithm was then 
tested for discriminative/predictive power 
against unlabeled (blinded) hand motion 
patterns from tasks not used in the 
training. The Lempel–Ziv (LZ) complexity 
metric was also measured from each 
hand motion pattern, with an optimal 
threshold calculated to separately classify 
the patterns.

Results
The LZ metric classified unlabeled 
(blinded) hand motion patterns into 

expert and novice groups with an 
accuracy of 70% (sensitivity 64%, 
specificity 80%). The SVM algorithm 
had an accuracy of 83% (sensitivity 
86%, specificity 80%).

Conclusions
The results confirmed the hypothesis. 
The SVM algorithm increased the 
predictive power to classify blinded 
surgical hand motion patterns into 
expert versus novice groups. With 
further development, the system used 
in this study could become a viable tool 
for low-cost, objective assessment of 
procedural proficiency in a competency-
based curriculum.
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Given that machine learning algorithms 
can efficiently recognize different pattern 
structures, we hypothesized that a machine 
learning algorithm could increase the 
predictive power to classify surgical 
expertise using hand motion patterns. 
The purpose of this study was to test our 
hypothesis. By proving our hypothesis, 
we could develop an assessment tool, 
with calculated specificity and sensitivity, 
to classify the expertise of a learner 
performing a specific surgical task and 
thus identify both competent residents and 
fellows and those in need of remediation. It 
would also offer the possibility to develop 
a device to provide formative feedback to 
junior residents during deliberate practice 
in the learner’s own time, and potentially 
at the learner’s own pace, without the need 
for a commitment of significant time and 
effort by an expert faculty evaluator.

Method

Participants

The University of North Carolina Medical 
Center institutional review board approved 
all procedures. In 2012, we contacted all 
University of North Carolina at Chapel Hill 
attending surgeons and surgical residents 
in their first and second postgraduate years 
(PGYs 1 and 2) via e-mail and asked if 
they wished to participate in the study. To 
standardize the data, left-hand dominance 
was an exclusion criterion. A consent form 
was attached to the e-mail invitation so 
that any questions could be answered prior 
to obtaining consent. Written consent 
was obtained at the time of participation, 
and participation was voluntary. All 
respondents were included in the study.

Task

Each study participant performed two 
latex bench model end-to-side simulated 
venous anastomoses using a continuous 
suture technique with 6/0 Prolene. A 
precut 20-mm longitudinal venotomy 
and identical surgical instruments were 
used by all participants to standardize the 
task. We told the participants to complete 
the simulated venous anastomosis but 
did not provide samples of an ideal 
anastomosis or instruction regarding the 
anastomosis, so all end products reflected 
the participant’s concept of best technique 
and his or her ability to achieve it.

Data collection

The hand motion of the participant’s right 
hand (up/down, forward/back, right/left,  

yaw, pitch and roll) was recorded at the 
rate of 20 times per second (20 Hz) while 
the participant was completing the latex 
bench model end-to-side simulated 
venous anastomosis. The hand motion 
data were acquired using a custom-made, 
low-cost (< $200) inertial measurement 
unit and microcontroller worn on the 
dorsum of the participant’s dominant 
(right) hand. The device used analog 
LPR530L (pitch and roll) and LY530ALH 
(yaw) gyroscopes (STMicroelectronics, 
Geneva, Switzerland), an ADXL335 
triple-axis accelerometer (Analog Devices, 
Inc., Norwood, Massachusetts), and 
an ATmega328-based microcontroller 
(Arduino, Italy). The ATmega328 
microcontroller obtained the data from 
the sensors to upload onto the MATLAB 
software environment (MathWorks, 
Natick, Massachusetts). Many other 
digital or analog sensors and other 
microcontrollers are easily available that 
could also be used to make a device to 
replicate this study.

Data analysis

The hand motion signals were analyzed 
using custom MATLAB software. Each 
motion pattern sample was converted 
into a binary symbolic time series. We 
used a symbolization scheme based on 
first-order difference in the observed 
measurements, considering the difference 
between two measured values at a time 
interval apart.14

The sequences of symbols were used as 
the input to calculate an LZ complexity 
score for each anastomosis.15 The LZ 
complexity was normalized by a factor 
n/logαn (n = sequence length and 
α = the number of alphabets in the 
symbolic sequence [α = 2 in the binary 
sequences]). One LZ complexity score 
was calculated per anastomosis trial. The 
LZ metric was tested for linear correlation 
against the samples’ paired task times 
using the Pearson product–moment 
correlation coefficient. A receiver 
operating characteristic (ROC) curve was 
also plotted to illustrate the performance 
of the LZ metric as a classifier when its 
discrimination threshold was varied. The 
ROC curve was created by plotting the 
fraction of true positives of the positives 
(sensitivity) against the fraction of false 
positives of the negatives (1 minus the 
specificity) at various threshold settings. 
ROC analysis provided the optimal 
threshold to maximize the accuracy of the 
LZ metric when used as a classifier.

The original SVM algorithm was 
invented by Vladimir N. Vapnik.11 
Feature extraction was used to reduce 
the dimensionality of the symbolic time 
series. These samples were then labeled 
as expert or novice according to the level 
of training of the participant (attending 
surgeons were labeled expert while 
surgical residents were labeled novice) 
and used to train the SVM classification 
algorithm. The trained algorithm was 
then tested for discriminative/predictive 
power using unlabeled samples (i.e., the 
algorithm was blind to the participant’s 
level of training) that were not included 
in the training of the algorithm.

Therefore, given a set of labeled training 
examples, each marked as belonging to 
one of two categories (expert or novice), 
the SVM algorithm built a model that 
assigned new examples into one category 
or the other. The SVM algorithm 
can efficiently perform nonlinear 
classification using what is called the 
“kernel trick.”11 The kernel function 
that was used in this study was a linear 
kernel, meaning dot product. The SVM 
constructed a hyperplane in a high-
dimensional space, which was used for 
classification.

In the field of artificial intelligence, 
a confusion matrix is a specific table 
layout that allows visualization of the 
performance of an algorithm; outside 
artificial intelligence, the confusion 
matrix is often called the contingency 
table or the error matrix (see Chart 1 
for an example). Each row of the matrix 
represents the instances in a predicted 
class, while each column represents the 
instances in an actual class. A confusion 
matrix was created for the LZ and for the 
SVM classifiers.

Results

Fourteen attending surgeons (experts) 
and 10 surgical residents (novices) 
volunteered and participated in the study. 
Each study participant performed two 
latex bench model end-to-side simulated 
venous anastomoses. Of the 14 attending 
surgeons, 4 were women and 10 were 
men. All 14 attendings were board 
certified in general surgery; 2 specialized 
in surgical oncology, 3 were vascular 
surgeons, 3 were transplant surgeons, 4 
were trauma/general surgeons, and 2 were 
primarily laparoscopic/bariatric surgeons. 
The 10 surgical residents included 6 
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women and 4 men. Of the 10 residents, 4 
were PGY 1 and 6 were PGY 2.

LZ metric

The LZ metric was tested for linear 
correlation against the paired task times 
using the Pearson product–moment 
correlation coefficient. The LZ metric had 
a weak negative correlation to total task 
time: Pearson r = –0.4.

The ROC curve for the LZ metric was 
plotted; this illustrated the performance 
of the LZ metric as a classifier when its 
discrimination threshold was varied 
(see Figure 1). The area under the curve 
(AUC) was 0.76. An AUC of 1.0 would 

mean that the test could be used to 
perfectly discriminate between novice 
and expert cases, whereas an AUC of 0.5 
would mean that the diagnostic accuracy 
of the classifier is equivalent to that which 
would be obtained by flipping a coin (i.e., 
random chance).

ROC analysis proved the optimal threshold 
to maximize the accuracy of the LZ metric 
when used as a binary classifier. The most 
cost-effective LZ threshold was calculated 
as 0.9008 (see Figure 1) which was then 
used to classify the hand motion patterns 
into expert and novice groups. A confusion 
matrix/contingency table allowed 
visualization of the performance of the LZ 
classifier (see Chart 2A). The LZ metric 

threshold classified the hand motion 
patterns with an accuracy of 70%, with a 
sensitivity of 64% and specificity of 80%.

SVM classification algorithm

The trained SVM classification algorithm 
was tested for discriminative/predictive 
power against unlabeled bench model 
anastomosis trials that were not included 
in the training. A confusion matrix/
contingency table allowed visualization 
of the performance of the SVM classifier 
(see Chart 2B). The SVM classification 
algorithm classified unlabeled/blinded hand 
motion patterns into expert and novice 
groups with an accuracy of 83%, with a 
sensitivity of 86% and specificity of 80%.

Discussion

This study proved our hypothesis: A 
machine learning algorithm increased 
the predictive power to classify surgical 
expertise using blinded hand motion 
patterns.

Machine learning algorithms can 
learn to recognize and classify patterns 
automatically. In this study, we recorded 
hand motion patterns during a simulated 
surgical task and then trained a machine 
learning algorithm using these hand 
motion patterns. After training, the 
algorithm classified the expertise of 
blinded surgical hand motion patterns into 
those of experts and novices, and this study 
has shown proof of concept using the SVM 
algorithm. This provided an innovative 
solution to automating assessment of 
surgical expertise by applying analytic tools 

Chart 1
The Confusion Matrix/Contingency Table Used to Visualize the Performance of the 
Two Classification Methods in This Studya

Surgical expertise
(as determined by level of training)

Expert Novice

Te
st

 o
u

tc
o

m
e

Expert True positive
False positive

(type I error)

Positive predictive value =

Σ True positive

Σ Test outcome positive

Novice
False negative

(type II error)
True negative

Negative predictive value =

Σ True negative

Σ Test outcome negative

Sensitivity =

Σ True positive

Σ Condition positive

Specificity =

Σ True negative

Σ Condition negative

Accuracy =

Σ True positive + Σ True negative

Σ Test outcome positive +

Σ Test outcome negative

 aEach row of the matrix represents the instances in a predicted class, while each column represents the 
instances in an actual class.

Figure 1 The Lempel–Ziv (LZ) complexity metric as a classifier of expertise in a surgical technique using motion pattern samples captured by a hand 
motion tracking device on the surgeon’s dominant (right) hand, University of North Carolina at Chapel Hill, 2012. Left panel: The receiver operating 
characteristic (ROC) curve illustrates the performance of the LZ complexity metric as a classifier of surgical expertise when the metric’s discrimination 
threshold is varied. Right panel: The ROC analysis provided the optimal threshold (i.e., the cutoff) to maximize the accuracy of the LZ metric when the 
metric is used as a binary classifier of surgical expertise.
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from the domain of computer science. We 
challenged the motion economy metrics 
used in previous surgical hand motion 
research by developing a new approach 
that uses hand motion patterns to assess 
open surgical technique and that requires 
no faculty assessor time.

Unlike motion economy metrics, the 
binary symbolic time series patterns 
that we studied do not have a strong 
correlation to total task time. This may be 
because the hand motion patterns capture 
the quality of the surgeon’s technique 
rather than his or her efficiency, although 
this is conjecture and was not directly 
evaluated in this study. Although fine 
finger and instrument manipulations 
or the tracking of both hands could be 
expected to give improved data, it is 
somewhat remarkable that our crude 
measure of surgical technique (i.e., the 
motion patterns of a single point on the 
dorsum of the dominant hand) could 
enable the algorithm to distinguish a 
significant difference between novice and 
expert surgeons. Our method has the real 
advantage of low cost and does not require 
(expensive) human expert assessors.

This study does have significant 
limitations. It was task specific 
and conducted only in a simulated 

environment, outside the OR. The study 
sample size was small and from a single 
institution, and the participating faculty 
and residents were volunteers rather 
than a random sample. However, our 
quantitative technique showed significant 
results, and increasing the training sample 
size could improve the performance 
of the machine learning classifier if 
overfitting were avoided. We did not 
examine the quality of the finished 
anastomoses and have not proved that 
the classifier is an indicator of the quality 
of task outcome. We did not evaluate 
real surgical skill, and we assumed that 
attending surgeons had more surgical 
skill and residents had less; therefore, we 
only demonstrated surrogate construct 
validity where level of training was a 
surrogate marker of real surgical skill/
performance. However, this limitation 
led to the interesting finding that the only 
two false negatives that were classified 
by the SVM (attending surgeons labeled 
as novice) were the full-time practicing 
laparoscopic surgeons, who had no 
routine day-to-day experience using an 
open technique of vascular anastomosis, 
possibly bringing into question the 
maintenance of this competency in these 
two surgeons. We cannot speculate from 
our data if significant differences in 
individual surgeon hand motion have 

an effect on final product outcome, as 
that was not the objective of this study. 
We have only proved that hand motion 
patterns can predict the level of expertise 
of a participant, using a participant’s 
grade (attending versus resident) as the 
marker of competency between cohorts. 
In the future, any correlation between 
quality of final product and the motion 
patterns should also be studied.

The use of machine learning software 
is a new avenue of research in surgical 
education. We believe that the expansion 
and development of the methods we 
used could form the basis of low-cost 
educational tools to evaluate procedural 
proficiency and increase educational 
efficiency to ultimately improve patient 
safety. With further development, our 
system could become a viable tool for 
objective assessment in a competency-
based curriculum. Ultimately, artificial 
intelligence and machine learning 
techniques hold potential for monitoring 
surgeons’ performance. Future technology, 
more sophisticated than that used in this 
study, could be used routinely on practicing 
surgeons in the OR with direct application 
to group quality assurance activities and/
or the early detection of impairment due to 
the effects of aging and illness.
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Groggy medical students and a 
hematologist gathered around the table 
on a Monday morning for a tutorial 
session. We were there to discuss the 
case of Iman, a seven-year-old child 
who came to the clinic for a routine 
examination. He and his family had 
recently immigrated to Canada as 
refugees. As my colleagues and I began 
the discussion, we scrutinized lab results, 
which showed microcytic anemia. 
Our group discussed the differential 
diagnosis, then we collectively decided 
to order iron studies and a hemoglobin 
electrophoresis. The tests uncovered 
what we suspected, and a diagnosis 
of beta thalassemia minor was given 
to Iman. Ours were brief exchanges 
about different kinds of thalassemias, 
treatment options, and side effects. We 
asked questions and answered them. It 
seemed like a relatively simple exercise.

As our time was winding down, we 
considered what impact our diagnosis 
would have on Iman and his family. I 
paused for a moment and scanned the 
patient description. Iman’s refugee status 
grabbed my attention. “I don’t think 
Iman would even have been diagnosed,” I 
blurted out. Some of my colleagues gave 
me puzzled glances. I explained: “I don’t 
think he would have received care under 
current Canadian regulations because 

many refugees are not eligible for routine 
medical examinations. The government 
recently made significant cuts to refugee 
health care.”

Some of my colleagues understood 
what I was referring to and some looked 
surprised. The recent cuts prevented 
some refugees from receiving basic health 
services, like prenatal screening and 
routine medical examinations. Without 
health insurance coverage, many refugees 
were discouraged from seeking proper 
health care or were turned away at the 
clinic. My colleagues and I spent the last 
few minutes of the session talking about 
disparities in access to health care.

Reflecting on this session, I realized that 
my colleagues and I had spent almost 
an entire hour talking about history 
taking, physical examination, lab tests, 
and treatment options, when in reality, 
Iman and his family would probably 
not even have come into the clinic 
because they lacked health insurance 
coverage. Reaching a correct diagnosis 
and discussing comprehensive treatment 
options were irrelevant if Iman and 
many other refugees in similar situations 
could not access the health care that 
they needed. Perhaps we should have 
started the session with a discussion 
about Iman’s refugee status and how 

that affected his access to health care and 
treatment options.

From this experience, I gleaned that 
diagnosis and treatment of disease  
cannot be separated from the social 
context of our patients’ lives. In addition 
to the scientific evidence and clinical 
principles that we need to consider, we 
must not forget to look at the whole  
patient and consider how social context  
can impact health. Moreover, I realized  
that understanding the social determinants  
of health can provide valuable infor-
mation to meet our patients’ unique 
health needs. Educating our selves about  
our patients’ health insurance coverage, 
access to health care, and policy changes 
are just as important as learning about 
the underlying causes and management 
of disease. Finally, being a good physician  
means not only learning about our 
patients’ social context but also advo-
cating for changes—from the clinic to 
the community level—that will allow 
our patients to access quality health care, 
regardless of where they are from.

Author’s Note: The name in this essay has been 
changed to protect the identity of the patient. 
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