Reproductive Health Risks Associated With Occupational Exposures to Antineoplastic Drugs in Health Care Settings

A Review of the Evidence

Thomas H. Connor, PhD, Christina C. Lawson, PhD, Martha Polovich, PhD, RN, AOCN, and Melissa A. McDiarmid, MD, MPH, DABT

Objectives: Antineoplastic drugs are known reproductive and developmental toxicants. Our objective was to review the existing literature of reproductive health risks to workers who handle antineoplastic drugs. Methods: A structured literature review of 18 peer-reviewed, English language publications of occupational exposure and reproductive outcomes was performed. Results: Although effect sizes varied with study size and population, occupational exposure to antineoplastic drugs seems to raise the risk of both congenital malformations and miscarriage. Studies of infertility and time to pregnancy also suggested an increased risk for subfertility. Conclusions: Antineoplastic drugs are highly toxic in patients receiving treatment, and adverse reproductive effects have been well documented in these patients. Health care workers with long-term, low-level occupational exposure to these drugs also seem to have an increased risk of adverse reproductive outcomes. Additional precautions to prevent exposure should be considered.

Health care workers who prepare or administer antineoplastic drugs, or who work in areas where these drugs are used can be exposed to these agents when they are present on contaminated work surfaces, drug vials and containers, contaminated clothing and medical equipment, and in patient excreta and secretions, such as urine, feces, and sweat. The toxicity of antineoplastic drugs is well recognized and includes short-term effects such as nausea and vomiting, blood count declines, and skin and mucous membrane irritation. Also well recognized in treated patients are these drugs’ reproductive and developmental toxicity.1–3

Routine work activities can result in spills, create aerosols, or generate dust, thereby increasing the potential of exposure.1–4 Skin absorption and inhalation are the most common ways a health care worker is exposed to antineoplastic drugs. Nevertheless, ingestion (from hand-to-mouth contact), accidental injection through a needle stick, or other sharps injury is also possible.5 These workplace exposures to antineoplastic drugs have been associated with health effects such as skin disorders, adverse reproductive outcomes, and certain cancers.1,6–8 Workers with potential exposure include pharmacy and nursing personnel, physicians, physicians’ assistants, nurse practitioners, operating room personnel, shipping and receiving personnel, waste handlers, maintenance and housekeeping workers, laundry workers, laboratory personnel, and workers in veterinary practices and others working in health care settings who come into contact with drugs or drug waste.6

OCCUPATIONAL EXPOSURE CHARACTERISTICS

Numerous published reports have documented the following: (1) workplace contamination with a small percentage of the total number of antineoplastic drugs currently in use (presumably similar for others but not known at this time), (2) uptake of antineoplastic drugs as indicated by measurable amounts of the drugs in the urine of health care workers, and (3) significant increases in biomarkers of genotoxicity in health care workers compared with control populations.9 At the present time, measurement of surface contamination is the best indicator of the level of environmental contamination in areas where antineoplastic drugs are prepared, administered to patients, or otherwise handled (such as receiving areas, transit routes throughout the facility, and waste storage areas).11 On the basis of more than 100 published studies, most workplaces where antineoplastic drugs are handled are contaminated with antineoplastic drugs and numerous studies have demonstrated worker exposure to these drugs.5 Some studies have shown an association between surface contamination and worker exposure.13–15 Industrial hygiene studies suggest that workplace contamination with antineoplastic drugs in the United States has not changed considerably over the past decade or more, indicating that worker exposure probably has not changed considerably, despite efforts to reduce or eliminate environmental contamination.14,16–19

The introduction of class II biological safety cabinets for the preparation of antineoplastic drugs in the 1980s substantially reduced the potential for worker exposure20 but not as efficiently as first believed.16 More recent attempts to reduce or eliminate workplace contamination have included using engineering controls such as compounding aseptic containment isolators, robotic systems, and closed-system drug transfer devices.17–19,21–23 This research suggests that even when these controls are used in health care settings, the potential for exposure to antineoplastic drugs cannot be completely eliminated.15,14,18,19,24–30

ANTINEOPLASTIC DRUGS LISTING AND CONTRAINDICATIONS DURING PREGNANCY

In 2004, the National Institute for Occupational Safety and Health (NIOSH) published an “alert” document on antineoplastic and other hazardous drugs that described safe handling practices for all health care workers.3 The alert also included a list of drugs that were considered hazardous to workers on the basis of the hazardous drug definition that includes properties of mutagenicity, carcinogenicity, and reproductive or developmental toxicity. That list of hazardous drugs was most recently updated in 2014, and approximately one half of drugs listed as hazardous by NIOSH are classified as antineoplastic, while the remainder comprise hormonal agents, immunosuppressants, antiviral agents, and others.5

From THC-Research Biologist, Division of Applied Research and Technology (Dr Connor) and CCL-Lead Health Scientist, Division of Surveillance Hazard Evaluations & Field Studies (Dr Lawson), National Institute for Occupational Safety and Health, Cincinnati, Ohio; Clinical Associate Professor, Byrdine F. Lewis School of Nursing and Health Professions (Dr Polovich), Georgia State University, Atlanta; and Division of Occupational and Environmental Medicine (Dr McDiarmid), University of Maryland School of Medicine, Baltimore. Mention of company names and/or products does not constitute endorsement by the National Institute for Occupational Safety and Health. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health. The authors declare no conflicts of interest.
Of the 184 drugs identified as hazardous by NIOSH, 99 possess precautionary labeling from the Food and Drug Administration as Pregnancy Category D and 43 are listed as Pregnancy Category X, indicating the potential for fetal harm. The remainder of the listed drugs are Category C or B. Pregnancy Category A is characterized as adequate and well-controlled studies in pregnant women have failed to demonstrate a risk to the fetus in the first trimester of pregnancy; Pregnancy Category B is characterized as animal reproduction studies have failed to demonstrate a risk to the fetus and there are no adequate and well-controlled studies in pregnant women; and Pregnancy Category C is characterized as animal reproduction studies have shown an adverse effect on the fetus and there are no adequate and well-controlled studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks. For Category D drugs, there is positive evidence of human fetal risk, based on adverse reaction data from investigational or marketing experience or studies in humans, but potential benefits may warrant use of the drug in pregnant women despite potential risks to the fetus. Category X drugs are those for which the fetal risk clearly outweighs the benefits to patients.31–33

Although published reports of adverse reproductive outcomes among health care workers pertain to exposure to antineoplastic drugs, the studies may be generalized to include health care workers exposed to other hazardous drugs. The National Institute for Occupational Safety and Health has identified hazardous drugs that are used to treat noncancerous conditions. Many of these drugs are reproductive hazards and are classified as Food and Drug Administration Pregnancy Category D or X. Some examples of hazardous drugs other than antineoplastic drugs that produce adverse reproductive effects in patients treated with them include thalidomide, diethylstilbestrol, valproic acid, and products containing valproic acid, paroxetine, ribavirin, and finasteride.34–41

According to the Food and Drug Administration, the current pregnancy category labeling may be misleading. Using A, B, C, D, and X to describe the risk of fetal harm implies that risk increases from one category to the next. In fact, C- and D-category drugs may have risks similar to those in category X, but risk is weighed against benefit. When considered in the context of occupational exposure, there are no benefits associated with drug exposure; therefore, occupational exposure of pregnant workers cannot be assumed to be harmless.

BIological Mechanisms

A substantial number of the drugs have been identified by NIOSH as hazardous and are also suspected or known human teratogens. Many are teratogenic and have adverse reproductive effects. The severity of the teratogenic effects depends on the drug, the dose, and the developmental stage of the fetus at exposure. Schardein lists several common antineoplastic drugs as human teratogens. Although information is available from human studies about individual drug exposures, most malignancies are treated with multidrug regimens. Therefore, many of the known teratogenic effects of individual drugs have been derived from animal studies. The literature on adverse reproductive effects of antineoplastic drugs in laboratory studies is beyond the scope of this publication. Drug package inserts for the antineoplastic drugs list adverse reproductive effects, including lethality, in animal studies at, and often less than, the recommended human dose. Reproductive health is one of the most vulnerable biological events at risk from exposure to antineoplastic drugs. Moreover, it has been hypothesized that many antineoplastic drugs actually target the developing fetus in the same way they target rapidly proliferating cancer cells. The risk can be influenced by the timing of exposure during discrete stages of development, as well as the potency and toxicity of the hazardous drug.

Reproductive hazards may affect the reproductive function of women or men or the ability of couples to conceive or bear healthy children. In women treated with antineoplastic drugs, adverse effects have been reported, including damage to ovarian follicles, decreased ovarian volume, and ovarian fibrosis resulting in amenorrhea and menopausal symptoms. For pregnant women, the “window of risk” begins approximately 1 month before conception and lasts through the pregnancy, though data from treated patients indicate that the most vulnerable window of risk occurs in the first trimester. In addition, numerous hazardous drugs are known to enter the breast milk of treated patients, therefore, the infants of health care workers have the potential to be exposed during breastfeeding if exposure to the mother occurs. In men, reported adverse effects include primary or secondary hormonal changes. In addition, a man can expose his female partner, her developing fetus, or both via contaminants on his skin or clothing or during sexual intercourse. Men produce sperm over approximately a 2-month cycle; therefore, a man’s sperm is vulnerable to hazardous exposure from as early as 2 months before conception. Infertility following treatment with antineoplastic drugs has been reported for both men and women because of the gonadal toxicity of the drugs. Consequently, both male and female workers handling antineoplastic drugs during any of these critical reproductive periods should be especially aware of potential risks to the health of their offspring even if their exposure is much lower than treated patients.

Although adults can be adversely affected by prolonged exposures to certain chemicals, the developing fetus and newborns up to the age of 6 months are usually more sensitive to chemical toxicity because of the incomplete development of systems for biotransformation and elimination. Unlike older children and adults, these pathways are underdeveloped and may be less efficient at detoxifying and excreting drugs. Therefore, in young children, toxicants may be present in higher concentrations in the blood for longer periods than would be true in older children whose detoxification and excretion pathways are more effective. For many chemical exposures, it is known that the fetus is more susceptible than the mother to the toxic chemical. In addition, studies have shown that exposure to chemicals and radiation in utero and early in life can disproportionately increase the occurrence of childhood cancer compared with exposures that occur later in life. Laboratory studies have demonstrated that many antineoplastic drugs are teratogenic, often in more than one animal species. Some classes of drugs are more hazardous than others. As a group, the antineoplastic drugs have been shown in animal studies to be some of the most potent teratogenic agents known even at doses typically used in cancer treatment. Alkylating agents, anthracycline antineoplastic antibiotics, and antimetabolites all have potent teratogenic activity in multiple animal species. For the developing fetus, it is known that the placenta is not an effective barrier to low-molecular-weight molecules and it is also more permeable to lipophilic chemicals and drugs. In patients treated with drugs, many antineoplastic and other hazardous drugs can reach the fetus in concentrations that could have deleterious effects.

In the United States, there are an estimated eight million health care workers potentially exposed to hazardous drugs; it is not known how many of them actually have exposure to antineoplastic drugs. Nevertheless, most of these health care workers are women of reproductive age who are at increased risk for adverse reproductive outcomes. The actual number of men and women who may be at reproductive risk while exposed to hazardous drugs, although less than eight million, is still quite large.

Therapeutic Exposure to Antineoplastic Drug and Reproductive Effects

There is a wealth of information documenting the adverse reproductive effects of antineoplastic drugs in patients who have been treated with them. Four recent publications have reviewed and summarized the effects of cancer treatment on the developing
Reproductive Effects Associated With Antineoplastic Drugs

During the entire pregnancy. A recent report by the National Toxicology Program\(^\text{68}\) provides a comprehensive summary of the effects of some antineoplastic drugs on reproductive outcomes in patients. Among other outcomes, the National Toxicology Program reported (1) a higher rate of major malformations after exposure during the first trimester than that after exposure in the second and/or third trimester, (2) an increase in the rate of stillbirth after exposure in the second and/or third trimester, and (3) abnormally low levels of amniotic fluid (primarily attributable to trastuzumab). This report also briefly addresses occupational exposure to these drugs and possible adverse reproductive outcomes in health care workers.

METHODS

The initial electronic database search was supplemented by manual searches of published reference lists, review articles, and conference abstracts. All English language, peer-reviewed publications that were obtained were included in this document. Meeting abstracts were not included. Overall, 18 individual studies were reviewed, some with multiple endpoints.

RESULTS

Table 1 summarizes studies of occupational exposure to antineoplastic drugs and congenital anomalies in offspring, including eight studies. The primary limitation of these studies is the small sample sizes; five of the eight studies had 10 or fewer exposed cases, and all studies had fewer than 20 exposed cases. The small sample sizes resulted in several other important limitations. These included a limited ability to adjust for confounding; the need to group anomalies that had different etiologies; and wide confidence intervals (CIs), which reflect poor statistical power. Nevertheless, of the studies that had more than five exposed cases, three showed significantly increased risks associated with exposure,\(^7\) and two showed increased risks that were not statistically significant.\(^7\) The odds ratios of adjusted models ranged from 1.36 (95% CI, 0.59 to 3.14)\(^7\) to 5.1 (95% CI, 1.1 to 23.6).\(^7\) A meta-analysis\(^7\) of four studies with exposure periods ranging from 1966 to 1985 reported a crude odds ratio of 1.64 (95% CI, 0.91 to 2.94) for all congenital anomalies combined. Although these previous studies suggest an increased risk for congenital anomalies with maternal occupational exposure, the limitations and wide CIs make the size of the adverse effect uncertain. In addition, studies that reflect current exposure levels are needed, because the studies published to date include data that were collected before the year 2000.

Studies of maternal occupational exposure to antineoplastic drugs and miscarriage are shown in Table 2. We identified eight studies evaluating miscarriage, an additional three studies that analyzed combined outcomes of miscarriage and stillbirth, four studies of stillbirths, and two studies of tubal pregnancies. The studies of miscarriage had mixed results, and three of these studies were limited by small sample sizes (fewer than 20 exposed cases). The three largest studies\(^7\) showed increased occurrence of miscarriages among women who reported handling of antineoplastic drugs during the first trimester. Most exposures were among oncology nurses or pharmacy technicians. Other studies that did not find statistically significant associations had odds ratios ranging from 0.7 to 2.8. A meta-analysis that pooled the results of five studies\(^7\) found an overall adjusted increased risk of 46% among exposed workers (95% CI, 11% to 92%).\(^7\) All studies published to date contain data collected before 2002.

More research is needed to examine the effects of occupational exposure to antineoplastic drugs and stillbirth because this is an uncommon outcome and therefore difficult to study. All of the studies of stillbirths (or of fetal loss, which combined miscarriage and stillbirth) had insufficient numbers of exposed cases (\(n = 1\) to 13), resulting in wide CIs.\(^7\) We found only two studies of tubal pregnancies, both with 10 or fewer exposed cases, and the results varied widely from odds ratio of 0.95 (95% CI 0.39 to 2.31)\(^7\) to odds ratio of 11.4 (95% CI 2.7 to 17.6).\(^7\)

We found only two studies of occupational exposure to antineoplastic drugs and fertility and time to pregnancy, both with 10 or fewer exposed cases (Table 3), though the results suggest that exposure to antineoplastic drugs is associated with an increased risk of subfertility.\(^68\) Only one study evaluated menstrual cycle characteristics; it showed a statistically significant three-fold increased risk of menstrual cycle irregularities from occupational exposure to antineoplastic drugs.\(^7\) A study of Danish oncology nurses showed no statistically significant differences in birth weight, gestational age, or sex ratio among exposed mothers,\(^7\) while a study of French oncology nurses exposed to antineoplastic drugs found the mean birth weight of offspring to be lower than that of the unexposed.\(^7\)

DISCUSSION

Although there is some variability in the size of the adverse outcomes observed among occupational cohorts reviewed here, the findings are generally indicative of an increased risk of adverse reproductive outcomes with occupational exposure, especially with exposures during the first trimester of pregnancy. Although all of the studies published to date were conducted before the release of the NIOSH Alert in 2004, environmental exposure studies since 2004 have documented that workplaces are still commonly contaminated with these drugs, and hence, workers are likely exposed for a long term to low levels of multiple agents known to be toxic to human reproduction. A workplace should be safe for all workers, regardless of their reproductive status, and this includes workplaces where antineoplastic drugs are used.\(^6\) When the reproductive

\(©\) 2014 American College of Occupational and Environmental Medicine
TABLE 1. Studies of Congenital Anomalies Associated With Occupational Exposure to Antineoplastic Drugs

<table>
<thead>
<tr>
<th>Reference</th>
<th>Exposure Period</th>
<th>Study Location</th>
<th>Population</th>
<th>Study Design</th>
<th>Overall Sample Size</th>
<th>Number of Exposed Cases</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fransman et al(^69)</td>
<td>1990–1997</td>
<td>the Netherlands</td>
<td>Oncology and other types of nurses</td>
<td>Survey</td>
<td>1,519</td>
<td>5 in highest-exposure category</td>
<td>No significant associations; CIs were wide</td>
<td>Retrospective exposure assessment was based on frequency of tasks; estimated dermal exposure. No evidence of dose response</td>
</tr>
<tr>
<td>Hemminki et al(^70)</td>
<td>Before 1985</td>
<td>Finland</td>
<td>Finnish hospital nurses</td>
<td>Case–control; survey</td>
<td>38 cases; 99 controls</td>
<td>19</td>
<td>Adj OR = 4.7 (95% CI, 1.2–18.1)</td>
<td>11 exposed cases handled less than 1 per week; 8 exposed cases handled once or more per week</td>
</tr>
<tr>
<td>McAbee et al(^71)</td>
<td>1985</td>
<td>the United States</td>
<td>Nurses and university employees</td>
<td>Cross-sectional survey</td>
<td>633 women (1,133 pregnancies)</td>
<td>10</td>
<td>Oncology nurses reported more birth defects than the control group ((P = 0.02) for crude analysis)</td>
<td>Response rate was 30%; analyzed first pregnancies separately from each additional pregnancy</td>
</tr>
<tr>
<td>McDonald et al(^72)</td>
<td>1982–1984</td>
<td>Montreal</td>
<td>Population based; doctors and nurses</td>
<td>Survey</td>
<td>152 exposed pregnancies</td>
<td>8</td>
<td>8/4 = observed/expected</td>
<td>Used medical records</td>
</tr>
<tr>
<td>Peelen et al(^73)</td>
<td>Before 1985</td>
<td>the Netherlands</td>
<td>Oncology nurses</td>
<td>Survey</td>
<td>229 exposed + 956 unexposed</td>
<td>7</td>
<td>OR = 5.1 (95% CI, 1.1–23.6) among nurses who prepared hazardous drugs</td>
<td>Had to work in oncology for 2 months or more during pregnancy</td>
</tr>
<tr>
<td>Ratner et al(^9)</td>
<td>1974–2000</td>
<td>Canada</td>
<td>Registered Nurses</td>
<td>Survey; registry</td>
<td>12,741</td>
<td>17</td>
<td>Adj OR = 1.42 (95% CI, 0.86–2.36)</td>
<td>On the basis of RNs who were ever or never employed in oncology</td>
</tr>
<tr>
<td>Skov et al(^7)</td>
<td>1985</td>
<td>Denmark</td>
<td>Oncology nurses</td>
<td>Retrospective cohort</td>
<td>266 exposed + 770 unexposed</td>
<td>16</td>
<td>Adj OR = 1.36 (95% CI, 0.59–3.14) in highest-exposure category</td>
<td>Prepared or administered hazardous drugs during pregnancy</td>
</tr>
<tr>
<td>Lorente et al(^74)</td>
<td>1989–1992</td>
<td>Europe</td>
<td>Population-based</td>
<td>Case–control</td>
<td>64 cleft lip/palate + 36 cleft palate + 751 controls</td>
<td>3</td>
<td>Cleft lip: OR = 3.35 (95% CI, 0.37–3.12); Cleft palate: OR = 11.25 (95% CI, 1.98–63.7)</td>
<td>CIs were wide</td>
</tr>
</tbody>
</table>

Adj, adjusted; CI, confidence interval; OR, odds ratio.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Exposure Period</th>
<th>Study Location</th>
<th>Population</th>
<th>Study Design</th>
<th>Overall Sample Size</th>
<th>Number of Exposed Cases</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fransman et al⁶⁹</td>
<td>1990–1997</td>
<td>the Netherlands</td>
<td>Oncology and other types of nurses</td>
<td>Survey</td>
<td>1,519</td>
<td>34, but divided into 3 categories</td>
<td>No significant associations; CIs were wide for miscarriage</td>
<td>Small numbers in categories; sample sizes were not clearly reported. Retrospective exposure assessment among nurses</td>
</tr>
<tr>
<td>Hemminki et al⁷⁰</td>
<td>Before 1985</td>
<td>Finland</td>
<td>Finnish hospital nurses</td>
<td>Case-control</td>
<td>169 cases + 469 controls</td>
<td>12</td>
<td>Adj OR = 0.8 (95% CI, 0.3–1.7) for miscarriage</td>
<td>50% response rate</td>
</tr>
<tr>
<td>Lawson et al⁷⁶</td>
<td>1993–2001</td>
<td>the United States</td>
<td>US Registered Nurses</td>
<td>Survey</td>
<td>775 cases + 6,707 live births</td>
<td>48</td>
<td>Adj OR = 1.94 (95% CI, 1.32–2.86) for miscarriage</td>
<td></td>
</tr>
<tr>
<td>Peelen et al⁷³</td>
<td>Before 1985</td>
<td>the Netherlands</td>
<td>Oncology nurses</td>
<td>Survey</td>
<td>249 exposed + 1,010 unexposed</td>
<td>Unclear</td>
<td>OR = 1.4 (95% CI, 0.8–2.6) for miscarriage</td>
<td>Small numbers, limitations in study design. See Fransman et al⁶⁹ study that replaces this study</td>
</tr>
<tr>
<td>Selevan et al⁷⁷</td>
<td>Before 1985</td>
<td>Finland</td>
<td>Nurses</td>
<td>Case-control</td>
<td>124 cases + 321 controls</td>
<td>18</td>
<td>OR = 2.3 (95% CI, 1.21–4.39) for miscarriage</td>
<td>First-trimester exposure to hazardous drugs more than once per week</td>
</tr>
<tr>
<td>Skov et al⁷</td>
<td>1985</td>
<td>Denmark</td>
<td>Oncology nurses</td>
<td>Retrospective cohort</td>
<td>281 exposed + 809 unexposed</td>
<td>18</td>
<td>Adj OR = 0.74 (95% CI, 0.40–1.38) for miscarriage</td>
<td>Prepared or administered hazardous drugs anytime during pregnancy</td>
</tr>
<tr>
<td>Stucker et al⁷⁸</td>
<td>1985</td>
<td>France</td>
<td>Hospital personnel</td>
<td>Survey</td>
<td>139 exposed + 357 unexposed</td>
<td>36</td>
<td>Adj OR = 1.7 (95% CI, 1.03–2.80) for miscarriage</td>
<td>Prepared hazardous drugs</td>
</tr>
<tr>
<td>Valanis et al⁷⁹</td>
<td>1985</td>
<td>the United States</td>
<td>Nurses and pharmacists</td>
<td>Survey</td>
<td>1,448 exposed + 5,297 unexposed</td>
<td>223</td>
<td>Adj OR = 1.50 (95% CI, 1.25–1.84) for miscarriage</td>
<td>Exposure to hazardous drugs during pregnancy</td>
</tr>
<tr>
<td>McDonald et al⁷²</td>
<td>1982–1984</td>
<td>Montreal</td>
<td>Population based</td>
<td>In-person survey</td>
<td>22.613</td>
<td>13</td>
<td>13 observed/13.4 expected miscarriages and stillbirths</td>
<td>Administered hazardous drugs during first trimester</td>
</tr>
<tr>
<td>McAbee et al⁷¹</td>
<td>1985</td>
<td>the United States</td>
<td>Nurses and university employees</td>
<td>Cross-sectional survey</td>
<td>663 women (1,133 pregnancies)</td>
<td>3</td>
<td>Adj OR of 0.67 for miscarriage and stillbirth</td>
<td>Low response rates (<30%)</td>
</tr>
</tbody>
</table>

(Continued)
TABLE 2. (Continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Exposure Period</th>
<th>Study Location</th>
<th>Population</th>
<th>Study Design</th>
<th>Overall Sample Size</th>
<th>Number of Exposed Cases</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogers and Emmett</td>
<td>Before 1985</td>
<td>the United States</td>
<td>Oncology and community health nurses</td>
<td>Survey</td>
<td>233</td>
<td>13</td>
<td>OR = 2.5 (P < 0.04) for miscarriage and stillbirth</td>
<td>OR did not change with adjustment for age</td>
</tr>
<tr>
<td>Fransman et al</td>
<td>1990–1997</td>
<td>the Netherlands</td>
<td>Oncology and other types of nurses</td>
<td>Survey</td>
<td>1,519</td>
<td>1 in the highest category</td>
<td>No significant associations; CIs were wide for stillbirth</td>
<td>Retrospective exposure assessment of frequency of tasks, dermal exposure</td>
</tr>
<tr>
<td>Peelen et al</td>
<td>1990–1997</td>
<td>the Netherlands</td>
<td>Oncology nurses</td>
<td>Survey</td>
<td>249 exposed + 1,010 unexposed</td>
<td>2</td>
<td>OR = 1.2 (95% CI, 0.65–2.20) for stillbirth</td>
<td>Small numbers</td>
</tr>
<tr>
<td>Valanis et al</td>
<td>1985</td>
<td>the United States</td>
<td>Nurses and pharmacists</td>
<td>Survey</td>
<td>7,094</td>
<td>12</td>
<td>Adj OR = 1.10 (95% CI, 0.55–2.20) for stillbirth</td>
<td>Studied only preconception exposures. Update of Saurel-Cubizolles et al 1993 article. Potentially overadjusted; included previous SA in analysis. The CIs were wide.</td>
</tr>
<tr>
<td>Ratner et al</td>
<td>1974–2000</td>
<td>Canada</td>
<td>Registered Nurses</td>
<td>Cohort</td>
<td>147/23,222</td>
<td>3</td>
<td>Adj OR = 0.67 (95% CI, 0.21–2.13) for stillbirth</td>
<td>Studied only preconception exposures. Update of Saurel-Cubizolles et al 1993 article. Potentially overadjusted; included previous SA in analysis. The CIs were wide.</td>
</tr>
<tr>
<td>Bouyer et al</td>
<td>1993–1994</td>
<td>France</td>
<td>Hospital personnel</td>
<td>Case-control</td>
<td>104 cases/279 controls</td>
<td>10</td>
<td>Adj OR = 0.95 (95% CI, 0.39–2.31) for tubal pregnancy</td>
<td>Studied only preconception exposures. Update of Saurel-Cubizolles et al 1993 article. Potentially overadjusted; included previous SA in analysis. The CIs were wide.</td>
</tr>
<tr>
<td>Saurel-Cubizolles et al</td>
<td>1985</td>
<td>Paris</td>
<td>Hospital nurses</td>
<td>Self-administered survey</td>
<td>85 exposed and 599 unexposed</td>
<td>6</td>
<td>Adj OR = 11.4 (95% CI, 2.7–17.6) for tubal pregnancy</td>
<td>Exposure to hazardous drugs during first trimester. See Bouyer et al update from 1998</td>
</tr>
</tbody>
</table>

Adj, adjusted; CI, confidence interval; OR, odds ratio.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Exposure Period</th>
<th>Study Location</th>
<th>Population</th>
<th>Study Design</th>
<th>Overall Sample Size</th>
<th>Number of Exposed Cases</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valanis et al[^4]</td>
<td>Before 1985</td>
<td>the United States</td>
<td>Nurses and pharmacy personnel</td>
<td>Case-control</td>
<td>405 cases + 1,215 controls</td>
<td>78</td>
<td>OR = 1.5 (95% CI, 1.1–2.0) for infertility</td>
<td></td>
</tr>
<tr>
<td>Fransman et al[^69]</td>
<td>1990–1997</td>
<td>the Netherlands</td>
<td>Oncology and other types of nurses</td>
<td>Survey</td>
<td>126</td>
<td>26 in highest category</td>
<td>Hazard ratio = 0.8 (95% CI, 0.6–0.9) for time to pregnancy</td>
<td>Retrospective exposure assessment among nurses</td>
</tr>
<tr>
<td>Shortridge et al[^83]</td>
<td>1986</td>
<td>the United States</td>
<td>ONS and ANA members</td>
<td>Survey</td>
<td>1,458</td>
<td>172</td>
<td>Adj OR = 3.4 (95% CI, 1.6–7.3) for menstrual dysfunction among nurses who administered chemotherapy</td>
<td>Menstrual dysfunction defined as one of the following: (1) 3+ mo of no periods, (2) cycle length of <25 or >31 days, or (3) flow duration of <2 or >7 days</td>
</tr>
<tr>
<td>Skov et al[^7]</td>
<td>1985</td>
<td>Denmark</td>
<td>Oncology nurses</td>
<td>Retrospective cohort</td>
<td>266 exposed / 770 unexposed</td>
<td>266</td>
<td>No statistically significant differences in adjusted analyses between exposed and unexposed for birthweight, gestational age, or sex ratio</td>
<td></td>
</tr>
<tr>
<td>Stücker et al[^85]</td>
<td>1985–1986</td>
<td>France</td>
<td>Oncology nurses</td>
<td>Survey</td>
<td>420 singleton live births</td>
<td>107 exposed pregnancies</td>
<td>In adjusted models, mean birthweight of exposed pregnancies was 56 g lower than unexposed (95% CI, −155.1 to 43.1)</td>
<td>No difference in gestational age between exposed and unexposed</td>
</tr>
</tbody>
</table>

[^4]: Valanis et al., 1985
[^69]: Fransman et al., 1990
[^83]: Shortridge et al., 1986
[^7]: Skov et al., 1985
[^85]: Stücker et al., 1985

Adj, adjusted; ANA, American Nurses Association; CI, confidence interval; ONS, Oncology Nursing Society; OR, odds ratio.
outcome data reviewed here are considered in light of their biological plausibility based on mechanisms of drug action and for their consistency with the results of animal and patient studies, a coherent body of evidence emerges. This evidence suggests the need for specific guidance for health care workers exposed to antineoplastic and other hazardous drugs, which assures protections for their reproductive health and the well-being of their offspring.

Given the unique vulnerability to exposure of the developing fetus and a newborn infant described earlier, and also given the potentially devastating impact of such exposures, several professional and government organizations have recommendations in place for alternative duty or temporary reassignment for health care workers who may be at risk of exposure to hazardous drugs during critical, vulnerable periods in reproduction. Typically, vulnerable windows include times when couples (men and women) are actively trying to conceive and when women are pregnant or breastfeeding. Since 1995, the Occupational Safety and Health Administration has recommended that health care facilities have a policy in place regarding reproductive risks associated with occupational exposure of workers to hazardous drugs and that such a policy should be followed. Britain’s Health and Safety Executive and other professional bodies recommend that an initial risk assessment should be performed to determine whether there is potential reproductive harm to the fetus or offspring. Nevertheless, because there are no established permissible exposure limits or other guidance values for these drugs, a classical risk assessment is often not possible. Therefore, other exposure assessments may be applied here. Although a precise dose of a hazardous drug may not be estimated for a given work task, the likelihood of some exposure can be assessed, given the environmental contamination data described earlier. Beyond the benefits to the health of workers and their offspring, providing accommodations to expectant and nursing workers makes good business sense because it is estimated that 68% of working women will become pregnant at least once during their working life; moreover, according to the US Census Bureau, two thirds of women work for the first time, and more than half (55%) of all births are to working women. Family-friendly workplace policies reduce turnover, and increase morale and productivity. Because of the possibility that health care workers may be exposed to low levels of many drugs with adverse reproductive effects, additional vigilance and protections might be required for those health care workers who are most vulnerable to the reproductive and developmental effects of hazardous drugs.

The primary limitation of the studies we evaluated is the era of the data collection; all studies published to date evaluated data collected before 2002, and most data were collected in the 1980s. Although there has been a lot of attention recently to raise awareness of controlling exposures, studies continue to show that exposures are still occurring. Another important limitation of the literature is the small sample sizes, particularly the small numbers of exposed cases. Because of this limitation, studies were often unable to adjust for confounding factors and reported wide CIs. Nevertheless, most of the studies we reviewed that had larger relative sample sizes indicated an increased risk of adverse reproductive health outcomes. Although there are few studies of fertility, there seems to be an indication of a risk with exposure. A data gap we identified is a lack of data on later childhood health of offspring exposed in utero. One study that was published as a dissertation showed an increased risk of learning disabilities among offspring of workers exposed to antineoplastic drugs. Finally, most studies lacked enough statistical power or proper exposure assessment to evaluate dose. Thus, until more current studies are available on occupational exposures, we recommend reducing or avoiding exposures until better epidemiological data show that the risk is no longer occurring.

Considering the biological plausibility of the mechanisms of action of many hazardous antineoplastic drugs, and observations of adverse reproductive and developmental health outcomes observed in patients who have been treated for cancer, this review suggests, fairly consistently, that there are also elevated risks to reproductive health for exposed workers. Workplace contamination studies indicate that hazardous drug exposure is widespread, commonly occurring during any handling activity, despite use of current safety guidelines. Therefore, additional precautions to prevent exposure during uniquely vulnerable windows of fetal and newborn development should be considered.

ACKNOWLEDGMENTS

The authors thank Kathleen Connick for assistance with the database searches and Patricia Mathias for assistance with the citations. They also thank Andrew S. Rowland, Linda A. McCauley, and Elizabeth A. Whelan for their critical review of the manuscript.

REFERENCES

