BIOLOGIA MOLECOLARE Insegnamento di Biologia Molecolare

Codice Disciplina: BT071	Settore: BIO/11	N° CFU: 5
Codice Insegnamento: BT022		
Docente: Pelicci Giuliana	Ore: 40	Corso di Laurea :
		Biotecnologie
		Anno: II
		Semestre : I

Obiettivo del modulo

Fornire le conoscenze di base della biologia molecolare principalmente negli organismi eucarioti , con particolare riferimento al settore bio-medico, le loro prospettive di ricerca e la comprensione dei principali processi cellulari.

Conoscenze ed abilità attese

Lo studente deve conoscere i meccanismi molecolari e cellulari che regolano la replicazione, la crescita cellulare e il programma di espressione genica sia in organismi procarioti che eucarioti.

Programma del corso

Programma

- Introduzione alla biologia molecolare: la nascita della Biologia Molecolare, dalla scoperta del DNA alla dimostrazione del suo ruolo come materiale genetico.

Struttura chimica e fisica del DNA. Le basi genomiche della complessità: il ruolo del controllo dell'espressione genica, cenni di genomica comparata

Basi molecolari dell'epigenetica: struttura e regolazione della cromatina

- struttura dei nucleosomie organizzazione della cromatina
- Gli istoni e le loro modificazioni (acetilazione, metilazione, fosforilazione).
- Meccanismi del rimodellamento istonico e delle modificazioni della cromatina e loro ruolo nella regolazione dell'espressione genica. Bromodomini e cromodomini. Ruolo e esempi di enzimi modificatori istonici: istone acetil transferasi (HAT), istone deacetilasi. Complessi di rimodellamento istonico.
- Ruolo e meccanismi degli elementi isolatori.
- Metilazione del DNA: significato biologico, DNA metil-transfrasi de novo e di mantenimento, meccanismi mediante cui la metilazione del DNA regola l'espressione genica: domini MeCP2.
- Regolazione, funzione e significato biologico dei complessi Polycomb e Trithorax, e delle loro attività metil-transferasi e demetilasi.

Regolazione della trascrizione

- cenni sulle differenze fra la trascrizione dei procarioti e degli eucarioti
- Trascrizione e regolazione negli eucarioti: RNA polimerasi II, struttura del promotore, fattori basali di Pol II e assemblaggio del complesso di inizio. Ruolo del Mediatore.
- Meccanismi di riconoscimento dei siti di avvio della trascrizione: TATA box e formazione dei complessi di avvio della trascrizione.
- Ruolo delle sequenze regolatrici della trascrizione e i fattori che regolano la trascrizione (fattori di trascrizione e loro organizzazione modulare e dimerica).
- Ruolo delle interazioni fra i fattori di trascrizione e i complessi di rimodellamento della cromatina e di modificazione degli istoni nella regolazione della trascrizione. Esempi.
- Meccanismi di repressione della trascrizione.

- Diverse strategie di regolazione della funzione degli attivatori della trascrizione. Esempi (NF-kB)
- Le principali quattro classi strutturali dei fattori di trascrizione: elica-ansa-elica (omeogeni), elica-giroelica (Myc/MAx/Mad), Cerniera di leucine (Jun. Fos, CREB, NFAT), dita di zinco (recettori ormoni lipidici). Per ciascuna classe: elementi strutturali e meccanismi di interazione con il DNA, regolazione della funzione, cenni sulla funzione e sui geni regolati)

La maturazione dell'RNA e il controllo post-trascrizionale

- Significato di del capping e della poliadenilazione dei trascritti. Cenni sui meccanismi di capping, poliadenilazione e terminazione del mRNA.
- Generalità sulla natura discontinua dei geni e significato dello splicing.
- Lo spliceosoma e i meccanismi molecolari dello splicing. Lo splicing alternativo
- Regolazione del riconoscimento dei siti di splicing: le sequenze ESE/ISE e ESS/ISS. Le proteine SR (contenenti i domini RRS) e le proteine hRNPs nella regolazione dello splicing.
- Esempi di patologie causate da mutazioni che deregolano lo splicing.
- Meccanismi di editing del mRNA.
- Cenni sulla regolazione del trasporto e della localizzazione deglimRNA.
- Regolazione della stabilità degli RNA (Esempio delle seq. IRE nella regolazione della stabilità e traduzione degli mRNA per il recettore della Transferrina e della Ferritina).
- I micro-RNA: struttura genica, trascrizione e maturazione, ruolo delle proteine Dicer e Argonauta, diversi meccanismi di regolazione dell'espressione genica (trascrizone, stabilità mRNA e traduzione). Natura combinatoriale delle interazioni fra micro-RNA e geni target. Esempi.
- Impatto della scoperta dei microRNA nello studio della funzione dei geni, nei tumori e prospettive cliniche.
- Short-interferingRNAs; utilizzo nella ricerca di base e nella clinica.

Replicazione del DNA

- meccanismo di replicazione negli eucarioti; Telomeri e problema della replicazione nei telomeri; meccanismo che controlla la replicazione nel ciclo cellulare;

Sistemi di Riparazione del DNA

-danni al DNA (mutazioni del DNA) e riparazione per escissione delle basi, riparazione per escissione di nucleotidi, riparazione di errori replicativi, riparazione di rotture su entrambi i filamenti.

Regolazione del Ciclo Cellulare

- Principi generali del controllo del ciclo cellulare.
- Ruolo dei complessi ciclina/Cdk nella progressione del ciclo cellulare.
- Meccanismi molecolari della regolazione delle Cdk: interazione con cicline, fosforilazioni attivatorie e inibitorie, interazione con proteine inibitrici (p121, p16, p27 ecc...). Meccanismi di regolazione delle cicline: trascrizione, ubiquitinazione/degradazione.
- Ruolo dei diversi complessi ciclina/cdk nella progressione delle diverse fasi del ciclo e concetto del "checkpoint".
- Regolazione dei complessi ciclina/Cdk in fase G1 e S: ruolo dell'attivazione di Jun/Fos e Myc e dei principali geni target di Myc; regolazione di E2F1 da Ciclina D/Cdk4, Rb e ciclinaE/Cdk2; regolazione del ciclo cellulare dai soppressori tumorali della famiglia p21, p16, p27 ecc... e loro regolazione da TGFbeta/SMAD e da p53.

Risposta cellulare allo stress

- La risposta al danno al DNA e i complessi sensori, trasduttori eeffettori: ruolo di Atm, ChK1/2, Cdc25 e p53 nella cascata di trasduzione del segnale attivata dal danno al DNA.
- p53: struttura, regolazione (da Mdm2, da Arf e da fosforilazione via Atm/Chk)e funzione nella risposta al danno al DNA, nella senescenza cellulare e nella risposta all'ipossia. Ruolo e meccanismi mediante cui p53 promuove arresto del ciclo cellulare e apoptosi. Significato delle mutazione di p53 nei tumori.

Apoptosi

- Significato generale dell'apoptosi nell'omeostasi cellulare.

- Via estrinseca dell'attivazione dell'apoptosi: recettori pro-apoptotici, il death domain (DD) e il deatheffector domain (DED) e la trasduzione del segnale apoptotico fino all'attivazione delle caspasiregolatorie (caspasi 8).
- Meccanismo di attivazione delle caspasieffettorie (caspasi 3) e ruolo dei loro substrati nel determinare l'apoptosi (cambiamento di forma, frammentazione del DNA, esternalizzazione della fosfofatidilserina) e il riconoscimento da cellule con attività fagocitica.
- Via intrinseca dell'attivazione dell'apoptosi: ruolo centrale della regolazione della permeabilità della membrana mitocondirale esterna nel determinare il rilascio di citocromo C, Smac/Diablo e altre proteine che regolano l'apoptosi. Meccanismo di attivazione delle caspasi9 da parte del citocromo c. Ruolo delle proteine IAP (inibitori di caspasi) nella regolazione dell'apoptosi.
- I diversi meccanismi di regolazione delle 3principali famiglie di caspasi (caspasi 8, 9 e 3)
- Formazione del poro della membrana mitocondriale esterna: le proteine Bcl2 pro-apoptotiche, le proteine Bcl2 anti-apoptotiche e le proteine BH3-only. Significato funzionale dei domini BH1, BH2e BH3.
- Regolazione delle proteine BH3 only: ruolo di Bid (substrato di caspasi 8), Bad, Bimecc... e loro regolazione da p53 e altri stress cellulari.
- L'attivazione di Akt/PKB da fattori di crescita nell'antagonizzare l'apoptosi: ruolo della fosforilazione di Bad, IKK e FOXOP3. Significato delle mutazioni di PTEN e della via di PI3K come meccanismo di evasione dall'apoptosi nella tumorigenesi.
- Necrosi: caratteristiche distintive dall'apoptosi

Manipolazioni genetiche nel topo

- Transgenesi standard, gene targeting, sistemi Cre-Lox(sistemi costitutivi e inducibili). Esempi di topi transgenici o knock-outgenerati per lo studio di patologie (malattia di Alzheimer, topo p53-/-)

Esercitazioni

Non previste

Attività a scelta dello studente

Non previste

Supporti alla didattica in uso alla docenza

Dispense, materiale didattico, presentazioni in powerpoint delle lezioni ed articoli forniti dal docente

Strumenti didattici

Laboratorio didattico di biologia molecolare

Materiali di consumo previsti

Non previsti

Eventuale bibliografia

Alberts et al. "Biologia Molecolare dell Cellula" V ed. Zanichelli Lodish et al. "Biologia molecolare della cellula", IV ed. Zanichelli Lewin "Il gene X", ed. Zanichelli B. Lewin et al.: Il Gene 2°ed compatta (Zanichelli, 2011) Amaldi et al. "Biologia Molecolare", seconda edizione (Ambrosiana) Michael M Cox Biologia Molecolare (Zanichelli)

Verifica dell'apprendimento

Prova scritta a domande aperte e verifica orale delle conoscenze e competenze acquisite.