CHIMICA e PROPEDEUTICA BIOCHIMICA corso integrato di *Chimica e propedeutica biochimica*

Codice disciplina: MC002 Codice Corso integrato: MC002	Settore : BIO/10	N° CFU: 5,00	
Docente:	Ore : 52	Corso di Laurea:	
Mario Anastasia		Medicina e Chirurgia	
		Anno : I	
		Semestre : I	

Obiettivo del modulo

Trasmettere allo studente la consapevolezza che gran parte di fenomeni biologici ed ambientali consistono in trasformazioni chimiche.

Conoscenze ed abilità attese

La conoscenza dei principi che regolano il comportamento chimico e chimico fisico della Materia, La capacità di eseguire semplici calcoli che illustrano gli aspetti quantitativi di modelli dei principali fenomeni biologici.

Programma del corso

CHIMICA GENERALE ED INORGANICA

<u>La materia</u>: Classificazione: sostanze pure e miscele. Elementi e composti. Miscele eterogenee e omogenee. Grandezze e unità di misura. Definizione e caratteri strutturali specifici degli atomi. Particelle subatomiche, isotopi e ioni, numero atomico e numero di massa, massa atomica, peso atomico relativo o massa atomica relativa, mole, costante di Avogadro. Molecole: definizione, massa molecolare e peso molecolare, differenza. Struttura dell'atomo secondo il modello atomico attuale. La configurazione elettronica degli elementi. Tavola periodica degli elementi.

<u>Legame chimico</u>: energia e lunghezza di legame. Legame ionico e legame covalente in funzione delle proprietà degli elementi ed in funzione della loro struttura elettronica. Legami covalenti polarizzati. Regola dell' ottetto. Composti ionici e composti covalenti: proprietà generali. Legame metallico. Interazioni idrofobiche. Molecole. Orbitali ibridi: forma delle molecole. Interazioni deboli: Ruolo delle interazioni inter-molecolari nella definizione dello stato fisico. Le proprietà dell' acqua.

Reazioni chimiche e calcoli stechiometrici relativi. Calcoli dei rapporti ponderali nelle reazioni chimiche, agente limitante e calcoli usando le moli.

<u>Le soluzioni</u>: solventi e soluti. Soluzioni di solidi, liquidi e gas in acqua. Misura della concentrazione di un soluto in una soluzione, Chimiche: attuali (molarità, molalità frazione molare), obsolete: normalità. Unità commerciali o fisiche (massa percentuale o percento in peso, percentuali miste m/V, V/V, p.p.m.). Ruolo della temperatura e della pressione nella solubilità dei soluti solidi o gassosi in acqua. Innalzamento ebullioscopico ed abbassamento crioscopico di una soluzione contenente soluti non volatili. Pressione osmotica. Osmolarità e tonicità delle soluzioni. Soluzione fisiologica. <u>L'equilibrio chimico</u>: legge dell'azione di massa. Costante di equilibrio: metodo di calcolo e suo ruolo nella previsione della direzione di una reazione chimica reversibile. Condizioni che permettono lo spostamento di un equilibrio chimico: principio di azione e reazione (Le Chatelier).

<u>Equilibri acido-base</u> in soluzione acquosa; forza degli acidi e delle basi. Equilibrio di autoionizzazione dell'acqua: significato di K_w , pH, pOH. Acidi e basi forti e deboli in acqua. K_a , K_b , p K_a , p K_b . pH di soluzioni di acidi e basi forti, di acidi e basi deboli, di ioni (sali) a carattere acido o basico. Indicatori acido-base. Soluzioni tampone. Meccanismo di formazione, composizione e proprietà delle soluzioni tampone. Misura del pH di soluzioni.

Calcolo approssimato del pH in soluzioni di acidi e basi forti e deboli in acqua di sali e di i soluzioni tampone.

<u>Cinetica chimica</u>: velocità di reazione: definizioni e metodo di misura. Legge di velocità ed ordine di una reazione. Costante di velocità; equazione di Arrhenius; energia di attivazione della reazione. Relazione tra la costante di equilibrio e le costanti di velocità di un processo chimico reversibile. Catalisi chimica.

<u>Processi di ossido-riduzione</u> (red-ox). Numero di ossidazione di un atomo in una molecola. Bilanciamento di reazioni di ossidoriduzione semplici.

Giustificazione termodinamica delle reazioni di ossidoriduzione.

CHIMICA ORGANICA.

Peculiarità della chimica del carbonio.

<u>Gruppi funzionali</u> caratteristici per le varie classi di composti del carbonio. Radicali: meccanismi di produzione di radicali liberi.

<u>Composti organici</u>: definizione, formula generale, formula di struttura e nomenclatura in base alle regole IUPAC e "d'uso" di: idrocarburi (alcani, alcheni, alchini, ciclici, aromatici), alogenocomposti, alcoli, fenoli, eteri, analoghi solforati (tioalcoli, tioeteri, tiofenoli, disolfuri) aldeidi e chetoni, acidi carbossilici, derivati degli acidi (alogenuri, anidridi, esteri, tioesteri, ammidi), ammine, semplici composti bifunzionali.

<u>Nomenclatura</u> dei radicali derivati da ciascuna classe di composti. Meccanismo di interazione con il solvente acquoso di ciascuna classe di composti del carbonio. <u>Isomeria.</u> Isomeria di posizione. Isomeria cis-trans. Chiralità: atomi stereogenici. Classificazione D,L.. Proprietà ottiche dei composti chiral.

<u>Aromaticità</u>: benzene: caratteristiche strutturali. Risonanza. Regola di Huckel. Reazione di sostituzione elettrofila sull' anello aromatico.

Scissione omolitica ed eterolitica di un legame covalente. Reazioni di sostituzione nucleofila. Carbocationi, carbanioni e loro stabilità. Reazioni degli alcoli e tioalcoli: acidità. Ossidazione. Reazione con alcoli e con tioalcoli a dare eteri e tioeteri. Reazioni delle aldeidi e dei chetoni: risonanza del gruppo carbonilico. Reazione di addizione nucleofila; reazione con alcoli con formazione di semiacetali ed acetali; reazioni con derivati dell' ammoniaca (ammine) con formazione di imminoderivati (basi di Schiff). Tautomeria cheto-enolica. Reazione di condensazione aldolica. Reazioni degli acidi carbossilici: Ka, risonanza dell'anione carbossilato, comportamento a pH fisiologico. Formazione di derivati: alogenuri acilici, esteri, ammidi, anidridi. Idrolisi dei derivati degli acidi. Ammine. Comportamento basico delle ammine. Un'introduzione delle biomolecole: Lipidi glucidi, amminoacidi e proteine acidi nucleici. Con particola Struttura e nomenclatura solo dei monosaccaridi. Indicazione Le D ed R ed S dei monosaccaridi e degli amminoacidi. (Classificazione secondo la natura della catena laterale. Proprietà acido-base degli amminoacidi. Curva di tiolazione. Punto isoelettrico.)

Esercitazioni

Su calcoli stechiometrici o su altri argomenti concordati con gli studenti e svolte in modo frontale interattivo. Lezioni On LINE N° 12,5

Attività a scelta dello studente

Si possono considerare interessi particolari dello studente, da concordare, per la proposta di lezioni on Line.

Supporti alla didattica in uso alla docenza

Lavagna.

Videoproiettore e computer con collegamento Internet in dotazione all'aula

Strumenti didattici

Lavagna e pennarelli, Presentazioni in formato MS-Power Point.

Materiali di consumo previsti

Pennarelli neri e variamente colorati per lavagna bianca

Eventuale bibliografia

CHIMICA GENERALE E ORGANICA

"Chimica di Base per le Scienze della vita" Anastasia M.. Edizioni A. Delfino "CHIMICA Generale" 10^{Ma} Edizione, Petrucci, Herring, Madura, Bissonette,. Edizioni Piccin Chemical structure and reactivity, An integrated approach, James Keeler Peter Wathers, Oxford University press

Verifica dell'apprendimento

L'esame consiste in una prova scritta finalizzata alla valutazione delle conoscenze pratiche e teoriche della materia.