BIOCHIMICA CLINICA elementi di Diagnostica di laboratorio			
Codice Disciplina : MS0168	Settore : BIO/12	N° CFU: 3	
Codice Corso integrato: MS0262			
Docente:	Ore: 30	Corso di Laurea :	
Pavanelli Maria Cristina		Tecniche di Laboratorio biomedico	
		Anno: II	
		Semestre : II	

Obiettivo del modulo

Fornire nozioni di base su enzimi, substrati, cicli metabolici, significato clinico, metodi di dosaggio

Conoscenze ed abilità attese

Conoscenze di base di matematica, chimica, fisica e biologia

Programma del corso

LEZIONE 1

- Di cosa si occupa la biochimica clinica
- Ruolo del laboratorio
- La richiesta di un esame
- Preparazione del paziente
- Modalità di prelievo/raccolta dei principali liquidi biologici (urine, liquor, liquidi peritonealepleurico- pericardico, liquido amniotico, liquido sinoviale, succo gastrico, liquido seminale, sangue venoso- arterioso- capillare)
- Anticoagulanti, attivatori e conservanti, trasporto e conservazione dei campioni, fattori interferenti le analisi biochimiche
- Variabilità pre-analitica

LEZIONE 2

- Variabilità pre-analitica: trasporto, accettazione, centrifugazione, conservazione dei campioni biologici
- Variabilità analitica: precisione, accuratezza, sensibilità analitica, specificità analitica.
- Controllo di qualità: controllo intra-laboratorio, VEQ, carte di controllo.
- Valori di riferimento.
- Sensibilità diagnostica e specificità diagnostica.
- Curve ROC.
- Metodi spettrofotometrici.

LEZIONE 3

- Principali metodi analitici
- Colorimetri, fotometri e spettrofotometri.
- Legge di Lambert-Beer.
- Curve di taratura.
- Metodiche spettrofotometriche end-point, cinetiche , cinetiche fixed-time.
- Elettroforesi in fase solida ed elettroforesi capillare, immunofissazione.
- Sistema immunitario e metodiche immunologiche: senza marcatura (precipitazione, agglutinazione diretta ed indiretta), con marcatura (RIA, EIA, ELISA).

LEZIONE 4

- Esame emocromocitometrico
- Esame completo delle urine: esame fisico, chimico, del sedimento urinario al microscopio ottico
- Metabolismo glucidico. Caratteristiche biochimiche dei carboidrati.
- Il ruolo epatico
- Omeostasi glicemica: Insulina, glucagone, GH, somatostatina, adrenalina, cortisolo.

LEZIONE 5

- Metabolismo glucidico: il diabete T1D, T2D, IGT, diabete gravidico, endocrinopatie causa di iperglicemia.
- Criteri per fare diagnosi di diabete. Esami di base, di approfondimento e monotoraggio terapia: glicemia, OGTT, profilo glicemico, insulinemia, ricerca Ab anti insula pancreatica, Ab anti insulina, HbA1c
- Metabolismo proteico: aminoacidi, proteine. Funzione delle proteine. Principali proteine di interesse diagnostico identificabili mediante analisi elettroforetica: pre-albumina, albumina, alfa1-antitripsina, alfafetoproteina, alfa2-aptoglobina, alfa2-macroglubulina, transferrina, immunoglobuline.
- Componenti monoclonali: MGUS e MM.
- Analisi di tracciati elettroforetici normali e patologici.
- Dosaggio PT (metodo Biureto), dosaggio Albumina (metodo Bromocresolo).

LEZIONE 6

- Funzionalità epatica: cenni di anatomia e fisiologia.
- Produzione, ruolo e dosaggio della bilirubina totale, diretta o coniugata e indiretta o non coniugata.
- Classificazione degli itteri. Principali enzimi di produzione epatica.
- Gli enzimi in generale: classificazione (EC), teoria di Michaelis-Menten, sito attivo, cofattori e inibitori, dosaggio (cinetica enzimatica).
- Gli isoenzimi. Principali enzimi di interesse diagnostico: LDH e suoi isoenzimi, ALP e suoi isoenzimi, GOT, GPT, GGT, CK e suoi isoenzimi, Amilasi totale ed isoenzima pancreatico, Lipasi, Colinesterasi, N. di dibucaina.

LEZIONE 7

- Metabolismo del ferro: assorbimento intestinale, omeostasi del ferro.
- Caratteristiche generali di ferritina, emosiderina, transferrina, lattoferrina. Anemia sideropenica. Malattia da accumulo di ferro.
- Quadro marziale: dosaggio della sideremia, della transferrina, della ferritina, TIBC.
- Marcatori tumorali: genesi tumorale, classificazione dei markers tumorali, metodi di dosaggio. Sensibilità e specificità diagnostica, VPP, VPN.
- Utilizzo clinico dei marcatori tumorali: quando dosarli (screening, follow-up).
- Linee guida per la richiesta dei marcatori tumorali. Criteri di specificità tissutale.
- PSA, Ca15.3, MCA, TPA, Cyfra 21.2, NSE

LEZIONE 8

- Marcatori tumorali: CEA, Tg, Calcitonina, CA125, CA19.9, AFP, altri indicatori di progressione neoplastica (B-HCG, idrossiprolina urinaria, ferritina, beta-2- microglobulina).
- Alterazioni del metabolismo lipidico.
- I lipidi: acidi grassi, trigliceridi, fosfolipidi, steroli (colesterolo, colecalciferolo, ormoni steroidei).
- Le lipotroteine: chilomicroni, IDL, VLDL, LDL, HDL.
- Metodi di determinazione dei complessi lipoproteici (ultracentrifugazione, elettroforesi). Via esogena ed endogena del metabolismo lipidico. Endocitosi delle LDL mediata da recettori. I recettori Scavenger: patogenesi dell'aterosclerosi. HDL: il trasporto inverso del colesterolo.
- Le apoliproteine.
- Linee guida per la refertazione dei livelli plasmatici di lipidi e lipoproteine. Dislipidemie.

LEZIONE 9

- Marcatori di danno miocardico.
- Diagnosi differenziale dei dolori toracici severi o prolungati, definizione di cardiopatia ischemica, fattori di rischio coronarico, patogenesi dell'aterosclerosi, IMA, angina instabile. Concetto di golden hour e di ritardo evitabile.
- Il marcatore biochimico ideale. CPK totale, CK-MB attività catalitica e di massa, Mioglobina, Troponine I e T, hs-Troponina.
- Scompenso cardiaco: peptidi natriuretici. ANP, BNP, CNP, DNP, Urodilatina. Sintesi di BNP (pre-proBNP, proBNP, NT-proBNP). Dosaggio e scelta.
- Funzionalità renale: il nefrone. Produzione delle urine. Filtrazione, riassorbimento, secrezione. Insufficienza renale acuta e cronica.
- Il laboratorio nella valutazione dell'insufficienza renale: urea (BUN) e azoto ureico, creatinina, acido urico.
- Concetto di velocità di filtrazione glomerulare e clearance.

LEZIONE 10

- Adattamento dei mammiferi alla vita terrestre: meccanismi di mantenimento dell'omeostasi idrica ed equilibrio acido-base.
- Regolazione dell'equilibrio acido-base: il ruolo dell'ormone adiuretico (ADH).
- Gli elettroliti. Il sodio: ruolo, regolazione, metodi analitici. Aldosterone. Il potassio: ruolo, regolazione, metodi analitici. Il cloro.
- La citometria a flusso: breve storia. I fluorocromi. Gli anticorpi monoclonali. Campi di applicazione della citometria a flusso. Materiali analizzabili. Criteri per un'ottimale analisi citometrica. Metodi di marcatura di antigeni di superficie e di antigeni intracitoplasmatici e nucleari.
- Analisi collegiale di referti di laboratorio.

Esercitazioni

Analisi di referti di laboratorio

Attività a scelta dello studente

Non prevista

Supporti alla didattica in uso alla docenza

Proiezione di diapositive in formato Power Point

Strumenti didattici

Non previsti

Materiali di consumo previsti

Nessuno

Eventuale bibliografia

Biochimica applicata alla diagnostica di laboratorio- principi e metodologie. P. Turini, V. Giarnieri, P. Tarola Editrice universo.

Verifica dell'apprendimento

Verifica scritta finale, co	n domande aperte.
-----------------------------	-------------------