Role of the Receptor like Protein Tyrosine Phosphatase zeta (RPTPz): Initial *in vivo* characterisation.

David Lafont, PhD student

Serono Advisor: Dr. Adage Tiziana, RBM Academic Advisor: Prof. Andrea Graziani, Università del Piemonte Orientale

R-PTPz.

Structure :

 Intracytoplasmic portion with 2 tyrosine phosphatase domains: through β-cathenin intracellular signaling cascade.

- Single transmembrane domain.
- Extracellular domain with sequence homology to Carbonic Anhydrase (CAH), fibronectin domain type III, and a spacer.
- CAH+Fibronectin: bind to contactin
- Zone of expression of R-PTPz :

Throughout the nervous system (CNS and PNS), including in glial cells (oligo, schwann, astrocyte but not in microglia).

Protein tyrosine phosphatases and neural development, Stoker and Dutta, Bioessays 1997

Role of the protein tyrosine phosphatase.

1. <u>In neural development</u>:

- Axon formation and guidance (regulation and modulation of nerve cells adhesion, dynamic state of the cytoskeleton).
- Glial cells development: migration.
- 5. In adult nervous system:
- Neuron/glia interaction: contactin/CAH+Fibronectin.
- Gliogenesis, glia differentiation (oligodendrocytes and Shwann cells), and survival.
- Neural migration, regeneration, and neurite outgrowth.
- Myelin formation.

Protein tyrosine phosphatases and neural development, Stoker & Dutta, Bioessays, 1998

No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase beta, Harroch et al, Molecular and Cellular Biology, 2000

Ligands and substrates of R-PTPz.

Published R-PTPz -/- mice.

• The nerves ultrastructure seems less compact, the myelin lamellae tend to separate, to be fragmented, and deformed in RPTPz KO mice.

• Toluidine blue staining shows intensive degeneration of the spinal cord in RPTPz KO mice compared with control.

• KO mice are more susceptible to EAE, and show impaired recovery.

• Double staining (TUNEL/CNP) shows that a considerable proportion of TUNEL positives cells are oligodendrocytes in RPTPz KO mice.

Harroch et al, Molecular and Cellular Biology, 2000; Harroch et al, Nature Genetics 32:3, 2002

KO construction.

Deletion Size: Approximately 27 KB

Characterization of *in house* R-PTPz KO mice

LacZ staining in adult +/-

Working hypothesis: is RPTPz plaingy a key role in myelination/remyelination, and axon functions?

 Behavioral phenotype: to assess in vivo deficiencies due to
RPTPz ko

2- Disease condition: to assess the impact of RPTPz ko in disease condition related to de/remyelination

Behavioral phenotyping.

Test battery n= 10 -/-, n= 10 +/+ (littermates) male, F2 generation

- <u>Locomotion</u>: Grip strength (fore-limb muscle strength) Open field (exploratory behavior and anxiety) Accelerated rotarod (motor coordination/learning & balance)
- <u>Memory</u>: Y maze (exploratory behavior and working memory)
- <u>Pain</u>: Tail clip (reflexive spinally mediated response to noxious stimulation) Hot plate (CNS mediated response to pain, requires neurological processing)
 Plantar Hargreaves (Thermal sensitivity)
 Von Frey (Tactile sensitivity)

Behavioral Result: Summary.

Test battery repeated in adult age

Test	Young (10-18 weeks)	Adult (40-48 weeks)
Grip strength	ns	ns
Openfield	ns	ns
Acc. Rotarod	** (T90)	** (T60); * (T90)
Y Maze	*	ns
Tailclip	ns	ns
Hotplate	*	**
Hargreaves	**	***
Von Frey	***	***

KO mice maintain behavioral phenotypes over time

Functional measure: Electrophysiology

i Modifica Acquisisci Str	umenti Analizza Move Einestra (guida				_ 8 ×		
		¥7 📢	🔽 🗖 🗖 💱 👯	REFE	2 1 4 4 4 4	7		
A server a s								
Onset	End	15,UmA 1Avg	C Desilo.	Scialic Iverve				
Line Mark		1	SIO 1 Carlied directation	Durata	Ampiezza	Area		
Onset	End	15.0mA	2 Castia al stimulation	3,3ms	1,1mv	C47-X/ms		
Sinser S	-	1Avg	2.Cortical stimulation	2,9ms	1,1mv	64/µVms		
A -	Contraction of the second second	2	3.Corrical stimulation	3,1ms	1,3mv	677µVms		
Gnst	End	15.0mA	4. Cortical stimulation	2,8ms	1,2mV	626µVms		
•	~ P	1Avg	5. Cortical stimulation	2,8ms	1,2mv	500 July ms		
AV		3	6.Conical stimulation	2,000	1,000	520µVins		
Onset	End	15.0mA	- O Castia al stimulation	2,8ms	1,0mV	543µVms		
	~~**	JAvg	o.Conical stimulation	2,000	1,0mv			
AC		4	9. Conical stimulation	2,8ms	920µV			
Onset .	End	15.0mA	10.Contical stimulation	3,3ms	1,109			
9 \	~	(Avg						
A \		5						
Onset	End	15.0mA	-		_			
: 🦻 🕴 🔰	~~	(AVG	Segmento	Oncet	Distanza	Mahorità		
A.			Assoluta	5 3mc	10.8cm	1.000000		
Onset	End	15.UmA	2.1	5.4ms	ro,ociii			
<u> </u>	\sim	7	3.2	5.3mc				
	Frid	15.0.4	4.3	5.4ms				
- 0`	enu	1Ava	5.4	5.5me				
Onse		8	6.5	5 5mg				
Onse	A state of the sta			E Cross				
	Find	15.0~4	7.6					
OnsA OnsA	End	15.0mA 1Avg	7.6	5.6ms				
Onse y Onse	End	15.0mA 1Avg	7-6 8-7 9-8	5,6ms 5,6ms				
Onse P Onse P	End	15,0mA 1Avg 15,0mA	7-6 8-7 9-8 10-9	5,6ms 5,6ms 5,6ms 5,6ms				
Onse Onse Onse	End	15.0mA 1Avg 15.0mA 1Avg	7 - 6 8 - 7 9 - 8 10 - 9	5,6ms 5,6ms 5,5ms				
Onse 7 Onse 0nse	End End End	15.0mA 1Avg 15.0mA 1Avg 10	7 - 6 8 - 7 9 - 8 10 - 9	5,6ms 5,6ms 5,5ms				
Onset Onset Onset	End Erd	15.0mA 1Avg 15.0mA 1Avg 10	7 · 6 8 · 7 9 · 8 10 · 9	5,6ms 5,6ms 5,5ms				
	End End	15,0mA 1Avg 15,0mA 1Avg 10 10	- 7.6 8.7 9.8 10.9	5,6ms 5,5ms 5,5ms				

- 1) Electrical stimulation at different places of the body (Ankle,Spinal cord, Head).
- 2) Recording at the Paw.

3)

- Functional measurement of myelin and axon integrity:
 - Total Conduction Time (TCT),
 - Peripheral Conduction Time (PCT),
 - Central conduction time (CCT)

No differences in nerve conduction velocity.

Conclusions

• No observable differences between the 2 genotypes in:

➢general locomotion (grip strenght)

>exploration of a new environment, and anxiety (open field)

➢nerve impulse conduction

• The impaired working memory test (Y Maze) in the -/-, and the presence of lacZ staining in hippocampal neurons may suggest a role of RPTPz in memory processes.

•The decreased ability to maintain balance on the rod in -/- mice and the presence of LacZ staining in cerebellar neurons may suggest the involvment of RPTPz in motor coordination.

•The hyposensitivity to thermal (hotplate, Hargreaves) and tactile (Von Frey), but not to mechanical pain (tail clip) in -/- mice suggest a potential role of RPTPz in nociception.

Disease Condition: Experimental Autoimmune Encephalomyelitis (EAE) Induced in RPTPz ko Mice

Long term EAE study (=80 days)

Protocol: 17+/+ & 14 -/- female mice, Day 0: immunization (MOG 200µg+PTX 400µL), DAY 2:2nd injection of PTX.

<u>CS</u>: 0: no clinical sign; 0.5: tail partially paralyzed, 1:tail completely paralyzed, 1,5: 1+1 hindlimb partial paralysis, 2: 1,5+ hindlimbs partial paralysis, 2,5: 1 hindlimb partial paralysis+1 hindlimb total paralysis, 3: hindlimbs complete paralysis, 3,5: 3+forelimbs partial paralysis, 4: 4 limbs total paralysis, 5: dead animal. <u>Time onset</u>: 16,2±0,6 for +/+mice, 14,8±0,4 for -/- mice

Stat: Day by Day comparison

Pain readouts on EAE mice

- Healthy mice: -/- mice are significantly less sensitive to a painful stimulus than +/+: confirmed hyposensitivity in female
- EAE induce hypoalgesia (increase in latency) in +/+ mice but not in -/- mice
- EAE +/+ have longer latency than EAE-/- mice.

Electrophysiology in EAE mice.

N= 10 Healthy +/+, 9 Healthy -/-, 9 EAE +/+, 9 EAE -/-

- Amplitude 625 500 9 375 250 125 0 Healthy +/+ EAE +/+ Healthy -/- EAE -/-Genotype 1 Way ANOVA, *: P<0.05
- Peripheral conduction time:

•no changes in healthy vs disease mice.

• Central conduction time as an index of demyelination:

•Impaired in EAE +/+

•no difference between healthy and EAE -/-

• Amplitude as an index of axonal loss:

•EAE induces a worsening of amplitude in +/+ and -/- mice.

•EAE DEFICITS IN RPTPz KO MICE MAY BE DUE TO AXONAL PATHOLOGY RATHER THAN DEMYELINATING DYSFUNCTION

EAE Results Summary.

 No significant difference in the course of the disease between -/- and +/+ mice.

- EAE doesn't induce significant difference, in terms of pain and nerve central conduction, in -/- mice, like it does in +/+ mice.
- The worsening in the Amplitude but not in the Central Conduction Time in -/- mice shows that RPTPz may be involved in axonal pathology.

What's next: immunohistochemistry on spinal cord to detect axonal loss.

Thank you...

Serono biotech & beyond

Preclinical Research Pharmacology: Neuropharmacology Unit

Università degli Studi del Piemonte Orientale "Amedeo Avogadro"

Accelerated Rotarod

•KO present deficit in motor activity/coordination at 90 minutes

Y Maze

Age : 15 weeks

<u>Y maze:</u> working memory, sensitive to hippocampal damage- 5min testing

1- exploration: nr of entries

2- working memory: nr of correct alternation defined as successive entries into the three arms (no re-entry in already explored arm)

% correct alternation:

{(number of alternation)/(Total arm entries -2)} x 100

•KO present impaired working memory

Percentage correct alternation

Hot Plate

Age : 10 weeks

Centrally mediated response, C- $A\delta$ fibers

KO present hyposensitivity to thermal pain.

Plantar Hargreaves

Age : 16 weeks

Measure time withdrawal paw from beam. Mainly C-fibers

KO present hyposensitivity to focal thermal stimulation.

Plantar Von Frey

Age : 16 weeks

KO present hyposensitivity to mechanical stimulation.

Electrophysiology.

Demyelinating dysfunction on EAE mice

Central Conduction Time $\begin{bmatrix} 5 \\ 4 \end{bmatrix} \xrightarrow{**} \xrightarrow{*} \xrightarrow{*}$

• Peripheral conduction time: no changes in healthy vs disease mice.

• Central conduction time as an indexe of demyelination: *no difference between healthy and EAE -/-*

• Amplitude as an indexe of axonal loss: **EAE induces a** worsening of amplitude in -/- mice.

EAE DEFICITS IN PTPRZ KO MICE MAY BE DUE TO AXONAL PATHOLOGY RATHER THAN DEMYELINATING DYSFUNCTION

No difference between genders for the Hargreaves test

eff by gender and genotype forelimb

Time course of the plantar Hargreaves test during an EAE

