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SUMMARY 

Multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are two 

inflammatory demyelinating nervous system disorders that share some similarities, including an 

autoimmune pathogenesis.  

During the PhD program I investigated whether variations in genes that were previously associated to 

autoimmunity may contribute to MS and CIDP pathogenesis, focusing especially on three genes, UNC13D 

gene (that encodes for Munc13-4) and PRF1 (perforin) gene, that are important for immune regulation and 

surveillance, and SPP1 gene, that encodes for the inflammatory citokine ostepontin (OPN). Munc13-4 and 

perforin proteins play a role in the cell-mediated citotoxicity. Munc13-4, in particular, is involved in the 

granule exocytosis pathway, regulating the maturation of the secretory vesicles and in their priming before 

granule fusion with the plasma membrane, whereas perforin is stored in the lytic granules and forms pores 

in the target cell membrane, triggering the granzymes-mediated apoptosis. Mutations in PRF1 and UNC13D 

genes have been associated to familial haemophagocytic lymphohistiocytosis type 2 (FHL2) and type 3 

(FHL3) respectively, an autosomal recessive disease due to defective function of cytotoxic cells.  

OPN is involved in immune regulation by enhancing Th1 and Th17 responses. Increased OPN serum levels 

have been associated to several autoimmune diseases including MS and several studies have been 

demonstrated that OPN plays an important role in inducing disease relapses. Moreover, it has been 

previously reported that OPN gene variations at the 3’ end of the gene are a predisposing factor for MS 

development and evolution. 

This thesis reports the following findings: 

1. Role of UNC13D gene in MS development 

The entire UNC13D coding region has been sequenced in 38 MS patients, 21 autoimmune 

lymphoproliferative syndrome (ALPS) patients and 20 Dianzani lymphoproliferative disease (DALD) 

patients compared to 61 healthy controls. It has been identified four rare missense variations in 3 

heterozygous ALPS patients carrying p.Cys112Ser, p.Val781Ile and a haplotype comprising both 

p.Ile848Leu and p.Ala995Pro and it has been demonstrated that these loss of function variations are 

risk factors for ALPS development. Concerning MS, two frequent variations has been found, 

p.Ala59Thr and p.Arg928Cys, previously described in FHL patients. Their allelic frequencies are 

similar in patients and controls (p.Ala59Thr: MS 4%, ALPS 2,4%, DALD 2,5%, controls 4,1%; 

p.Arg928Cys: MS 2,6%, ALPS 2,4%, DALD 5%, controls 6,5%), suggesting that these variations are 

not involved in the development of MS. 
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2. Role of osteopontin in MS development and progression 

By sequencing analysis, the +1239A>C SNP, located on 3’ end of SPP1 gene, has been studied in 728 

MS patients and 1218 healthy controls (a much larger cohort than the previous report), and the -

156G>GG SNP, located in the 5’ end of the gene, has been typed in the same patients and 912 

controls. It has been found that only +1239A>C SNP show a statistically significant association with 

MS development, as the frequency of +1239A homozygotes are decreased in MS patients than 

controls (46% vs 52%, p=0,011) and they display 1,27 lower risk of MS than +1239C carriers. 

Nevertheless, the analysis of -156G>GG SNP frequency have not revealed any significant difference 

between patients and controls. Intriguingly, both +1239A and -156GG SNPs influence MS 

progression, since patients homozygous for both alleles display slower progression of disability and 

slower switch from RR to SP courses than patients carrying +1239C and/or -156G and those 

homozygous for +1239A only. Moreover, patients homozygous for +1239A allele also display a 

significantly lower relapse rate than patients carrying +1239C, confirming the established role of 

OPN in MS relapses.  

3. Role of perforin in CIDP 

By sequencing PRF1 gene in 94 CIDP patients and 158 age-matched controls it has been identified in 

both groups A91V variation, previously associated to FHL2, DALD and MS, and two missense 

variation (R4H and R385W) and a novel nonsense variation (Q423X) in CIDP patients. All together, 

carriers of these variation has been more frequent in patients than controls (21,3% vs 5,7%; 

p=0,0004; OR=4,47). Although A91V has been the most frequent variations and has been displayed 

a trend of association with CIDP (19% vs 6%; p=0,0017; OR=3,92), suggesting that A91V and 

possibly other perforin variations are susceptible factors for CIDP development. 

4. Role of OPN in CIDP 

Preliminary results from ELISA assay performed on 44 CIDP patients and 22 healthy controls have 

been demonstrated that plasma OPN levels are significantly increased in patients than controls 

(mean value: CIDP patients 233,5 ng/mL vs controls 129,6 ng/mL; p=0,011). By typing the +1239A>C 

SNP located on the 3’ end of SPP1 gene in 64 CIDP patients, it has been found that the frequency of 

+1239A homozygotes are similar to those previously reported in MS patients (47% vs 46%), 

nevertheless further studies are needed to establish the role of OPN in CIDP development. 
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MULTIPLE SCLEROSIS 

A brief disease overview  

 

Multiple Sclerosis (SM) is a chronic autoimmune inflammatory disease of central nervous system 

(CNS) characterized by demyelination and axonal damage [1]. MS is among the most common 

causes of neurological disability in young adults, with more than 2 million people affected 

worldwide. Many epidemiological studies have been performed in Italy with an estimated 

prevalence of about 100 cases per 100,000. Incidence and prevalence rates varied across regions 

and the highest values have been found in Sicily and Sardinia [2]. The disease typically appears 

between 20 and 40 years of age, occasionally in childhood and late adulthood, and women are 

affected approximately twice as often as man [1].  

The disease starts with variable symptoms that include weakness in one or more limbs, sensory 

disturbances, visual difficulties such as blurred vision and diplopia, gait instability and ataxia. 

Concurrently with disease worsening, most patients experience bladder dysfunction, fatigue and 

heat sensitivity. Other clinical features are Lhermitte’s sign, an elettrical sensation that runs down 

the spine and into the limbs followed by neck flexion, and Uhthoff’s phenomenon, a worsening of 

symptoms when core body is exposed to higher temperature, such as after an exercise or an hot 

bath, both particularly characteristic of MS, as well as vertigo, tonic spasms and other paroxysmal 

symptoms. Cognitive impairment is also common, especially as the disease progresses, and 

includes memory loss, deficits in attention and problem-solving difficulties. Depression and 

unstable mood occur in the majority of patients [3].  

Four clinical patterns of the disease are described: 

- relapsing-remitting MS (RRMS), 

- secondary progressive MS (SPMS), 

- primary progressive MS (PPMS), 

- progressive relapsing MS (PRMS). 

RRSM is the most common form, manifested of about 85% of patients. It is characterized by acute 

symptomatic episodes of worsening (called relapses or exacerbations) that occurs in a period of 

time, followed by complete or partial recovery (remissions). Approximately in half of these 

patients SP course occurs within 10 years of disease onset and they experience a gradual 

progressive neurological decline with or without periods of remissions. PP form is more resistant 

to current treatments and affects about 10% of MS patients that display a steady worsening of 
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disability from onset. Finally, PRMS is a rare clinical pattern, affecting less than 5% of patients, and 

it is characterized by gradual progression of disability from disease onset, with relapses that 

appear later [3].  

Several diagnostic criteria, continuously under revisions, have been proposed over the last decade 

to identify the disease [4]. Clinical evidence may be sufficient for a diagnosis, but possibly can be 

supported by other analysis. Magnetic resonance imaging (MRI), for instance, is useful for 

detecting the presence and the location of demyelinating areas (plaques) in CNS. More than 95% 

of patients display multiple asymmetrically lesions in the white matter, especially in the corpus 

callosum and in deep periventricular regions. Besides, by extrusion of the heavy metal gadolinium 

across the blood-brain barrier (BBB), new active lesions can be discovered, associated to 

breakdown of the BBB itself and perivenous inflammation. Advanced technologies can also be 

used to detect spinal cord lesions that are frequently present. Cerebrospinal fluid (CSF) studies, 

such as electrophoresis analysis, detect oligoclonal bands IgG-restricted in about 90% of MS 

patients that can provide evidence of chronic inflammation [3].  

The disease evolves over several decades and death generally occurs 30 years of disease onset. On 

the average, life expectancy of MS patients is about 5-10 years lower than that of unaffected 

people. Nevertheless, two-thirds of the deaths are directly related to the consequences of the 

disease (such as increased risks and complications of infections) [1].  

In the management of MS, there is no known cure for the disease and currently therapies aim to 

ameliorate its course, improving the quality of everyday life. Methylprednisolone or oral anti-

inflammatory corticosteroids are used for the treatment of acute exacerbations that occur in 

RRSM, since they are effective in short-term treatments for reducing relapse duration and 

relieving symptoms. On the other hand, long-term therapies include disease-modifying treatments 

such as β interferons (IFNs), glatiramer acetate and Natalizumab (a monoclonal antibody against 

α-4 integrin) that prevent relapse and slow down disease progression. Nonetheless, all these 

treatments fail to show a benefit in progressive forms of the disease. Other immunomodulatory 

agents are Mitoxantrone, approved for use in RRMS and SPMS as second-line agent, and 

Fingolimod, a sphingosine-1-phosphate receptor (S1PR) antagonist. Both treatments reduce the 

relapse rate and delay the progression of disability in patients with relapsing forms of the disease. 

Advances in understanding the disease stimulated the development of new therapeutic agents 

such as Rituximab, a chimeric monoclonal antibody targeting CD20+ B cells. Clinical trial studies 

have been demonstrated that this B-cells depleting strategy is effective in decreasing the number 
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of CNS lesions, as detected by MRI, and in reducing the relapse rate, but several agents have also 

reported promising results [5].   

The etiology of MS is unknown. Several studies suggest that environmental triggers in a genetically 

susceptible individuals are involved in the pathogenesis of the disease, leading to an altered 

immune response directed against self that results in inflammation, demyelination and 

neurodegeneration. A large number of environmental factors have been investigated and include 

viral and bacterial infections, nutritional and dietary factors, pollution, solar radiation, 

temperature, chemical agents, and so on. Herpes virus simplex 1 or 2, cytomegalovirus, measles, 

mumps, rubella and Epstein-Barr virus have been promoted as the causative MS agents. 

Nevertheless, viral infection hypotesis account of several aspects related to geographical variation, 

CSF titer, viral reactivation and MS exacerbation. Instead, the genetic susceptibility in MS, that has 

been recently reviewed [6], has been initially suggested by familial aggregation and concordance 

twins studies [3]. However, the first genetic factor related to the disease has been the human 

leukocyte antigen (HLA) class II locus in the major histocompatibility complex (MHC) region, on 

chromosome 6p21, and the association with haplotype DRB1*1501-DQA1*0102-DQB1*0602 has 

been confirmed during the last decades. Other non-HLA candidate genes have been identified by 

using Genome-Wide Association Studies (GWAS), highlighting an important role of immune system 

in the pathogenesis of the disease, and include cytokines (such as IL7, IL12A, IL12B) and cytokine 

receptors (IL7R, IL2RA, IL22RA), co-stimulatory molecules (CD58, CD6, CD40, CD80, CD86) and 

signal transducer molecules (TYK2, STAT3). In agreement, results from micro-RNAs (miRNAs) also 

underline the involvement of immune regulation in MS. Gene-expression studies performed on 

the CNS of both MS patients and experimental autoimmune encephalomyelitis (EAE) mice (MS 

animal model) provide valuable details on molecular pathways implicated in the disease and 

studies performed on peripheral blood show a central role for T cell activation and inflammation. 

In addition, it has been demonstrated that epigenetic factors, such as promoter methylation, 

regulates the expression of several genes, such as PAD2, SHP-1 and IL17A. All those findings shed 

light on the etiology of the disease, underling the complexity of MS [6].  

 

Insight into MS immunopathogenesis 

The hypothesis that MS is an autoimmune disease arises from several findings: 

- the presence of inflammation at the site of lesions; 

- the course of the disease could be modified by immunomodulatory agents; 
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- the presence of oligoclonal bands in CSF of patients; 

- the disease susceptibility is associated to genes involved in the immune response [7]. 

In addition, the animal model shares some similarities with the human disease. In those mice, EAE 

is induced though immunization with myelin sheath proteins or peptides, such as proteolipid 

protein (PLP), myelin oligodendrocyte glycoprotein (MOG) or myelin basic protein (MBP), and  the 

disease is also driven by myelin-specific CD4+ T cells, that can be adoptively transferred to healthy 

animals. In these conditions, the mice develop a relapsing-remitting or a chronic progressive 

courses, characterized by CNS inflammation and demyelination, resembling MS [8]. Myelin-specific 

autoreactive T cells are also found in peripheral blood and CSF of MS patients, nevertheless the 

way in which these cells become activated in periphery still need to be elucidated. Molecular 

mimicry, whereas T cell activated against non-self epitopes from viral/bacterial agents cross-react 

with similar self-myelin epitopes, or myelin antigen constitutively exposure are some postulated 

mechanisms. After peripheral activation, autoreactive T cells transmigrate across the BBB in CNS, 

in a process involving adhesion molecules, chemokines and matrix metalloproteinases  (MMPs) 

[7]. An important role is carry out by α4β1 integrin (VLA-4, very late activation antigen 4), 

expressed on the surface of activated lymphocytes, that interact with VCAM-1 (vascular cell 

adhesion molecule 1), expressed on endothelial cells of blood vessels [9]. The relevance of this 

interaction is suggested by the fact that Natalizumab, a humanized monoclonal antibody against 

α-4 integrin subunit of VLA-4, used in the treatment of MS, inhibits the migration of autoreactive T 

cell into the CNS, reducing the disease activity [5]. MMPs are proteolytic enzymes implicated in 

BBB distruption through the degradation of the extracellular matrix and the basement 

membranes, but they also participate to demyelination, cytokines activation and axonal damage. 

Elevated peripheral blood and CSF levels of MMP-9 have been reported in MS patients and 

correlate with disease activity [10]. In the CNS, astrocytes, microglia and macrophages act as 

antigen presenting cells (APCs) and exhibit myelin antigens through class II MHC molecules to 

CD4+ autoreactive T lymphocytes which are reactivated and are able to differentiate in various 

subtypes with different effector functions, such as lymphocyte T helper type 1 (Th1), secreting the 

pro-inflammatory cytokine interferon-γ (IFN- γ). MS is considered a primarily Th1-mediated 

disease [7]. Moreover several studies have been demonstrated that Th17, secreting IL-17,  have a 

role in the pathogenesis of MS. In fact, increased expression of IL-17 have been found in 

peripheral blood, CSF and brain tissue of MS patients and the frequency of Th17 cells in CSF is 

significantly increased during exacerbations compared to remission phases of the disease [11]. In 
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addition, the phenotypic characterization of these cells reveals higher expression of activation 

markers and co-stimulatory and adhesion molecules than Th1 subset, highlighting their pathogenic 

role in MS [12]. In vitro studies have also demonstrated that Fingolimod, the S1PR modulator used 

in current MS therapies, suppress the generation of Th17 cells [5]. Regulatory T cells (Tregs) 

CD4+CD25+ may also be involved in MS. Their number in patients and healthy controls is similar, 

but patient Tregs have an impaired capacity to suppress the activation of myelin-specific T cells in 

the periphery, in particular in RRSM patients [13]. Furthermore several evidences suggest that 

CD8+ T cells (cytotoxic T lymphocytes, CTLs) take part in the disease process. In fact, these cells are 

present in the inflammatory infiltrate in CNS lesions and the adoptive transfer of activated myelin-

specific CD8+ T cells induce EAE, prompting a role for CD8+ as effector cells in MS pathogenesis. 

Besides, axonal damage is correlated with the number of CD8+ T lymphocytes infiltrating MS 

lesions which attack directly neurons, probably through the releasing of soluble mediators. The 

involvement of the humoral immunity is suggested by the presence of oligoclonal 

immunoglobulins in CSF of patients. B cells may directly contribute to demyelination by secreting 

antibody that target oligodendrocytes (with or without complement) [7]. In addition, Rituximab 

therapy, an anti-CD20 monoclonal antibody which efficiently depletes B cells, reduce MS 

inflammatory brain lesions and clinical relapses [5].  

Demyelination is considered a primary pathological feature of MS, while axonal loss is an 

important pathological finding that correlate with disease progression and permanent 

neurological disability in patients. Mechanisms for axonal damage in MS are several and can 

include an immunological attack on axons, soluble mediators such as proteases, cytokines, and 

free radicals released in the inflammatory environment or in CSF of MS patients, or lack of axonal 

neurotrophic factors provided by oligodendrocytes as a result of chronic demyelination [7].    
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CHRONIC INFLAMMATORY DEMYELINATING POLYNEUROPATHY 

A picture of the disease 

 

Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare autoimmune disorder of the 

peripheral nervous system (PNS). The disease can occur at any age, but it mainly affect young 

adults, especially men. Clinical features, age of onset and the course of the disease vary among 

patients. Because of the heterogeneity of clinical presentations and the absence of specific 

markers for definite diagnosis, CIDP is often misdiagnosed and probably underestimated. In the 

epidemiological studies performed to date, the prevalence ranges from 1 to 7,7 per 100,000 [14]. 

A Northern Italy study reported a prevalence of 3,58 per 100,000 [15]. 

CIDP is clinically characterized by symmetrical proximal and distal weakness, associated to altered 

sensation, absence or diminished tendon reflexes (areflexia or hyporeflexia), elevated protein 

levels in CSF and heterogeneous slowing of nerve conduction, due to demyelination. CIDP is 

typically a slowly progressive disease that evolves over more than 2 month, distinguishing from 

Guillain-Barré syndrome (GBS), which has an acute onset.    

 Three types of clinical patterns of the disease have been described: 

- a monophasic course, characterized by the progression of the disease until fully recovery 

with treatment, usually in absence of relapse; 

- a relapsing-remitting course, in which period of relapses are followed by complete 

remissions;  

- a chronic progressive course, in which patients display a progressive deterioration. 

About 20-35% of patients show a relapsing-remitting form, while about 7-50% of patients present 

a monophasic disease. 

CIDP selectively involves the peripheral system, both motor and sensory fibres (although in some 

cases motor or sensory fibres are affected). Moreover the disease is characterized by a progressive 

worsening or fluctuating course. Occasionally, cranial nerves are affected. CIDP can also be 

associated with various conditions, including hepatitis C, inflammatory bowel disease, lymphoma, 

monoclonal gammopathy of undetermined significance (MGUS), acquired immune deficiency 

syndrome (AIDS), organ transplant and connective tissue disorders. Furthermore, several studies 

have been reported that CIDP is more frequent in patients with diabetes mellitus than in general 

populations, but other investigations are controversial. CIDP is also been reported in patients with 
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Charcot-Marie-Toth disease, suggesting that different inflammatory mechanisms might occur in 

hereditary neuropathies and contribute to disability.  

CIDP may also appear in childhood and it is characterized by a rapid onset, greater disability at the 

peak of the disease and a relapsing course in comparison with adult patients, but it responds 

better to treatment, with a more favourable long-term outcome [16].  

In general, diagnosis is primary based on a neurological examination, that assess the presence of 

clinical features, and on electrophysiological studies, that often show a slowing or blocking of 

nerve conduction due to demyelination. Further laboratory investigations can be required and 

include CSF investigations, that reveal an increased protein levels and a normal or slightly elevated 

cell count, and nerve biopsy, usually of the sural nerve, histological evidence of demyelination and 

remyelination, often associated to inflammatory infiltrates.  

Therapies are addressed to block the immune processes, aiming to arrest inflammation and 

demyelination, and to prevent secondary axonal degeneration, that leads to permanent disability 

[17]. The most widely used treatments are intravenous immunoglobulins (IVIgs) and 

corticosteroids, that are effectively, while plasma exchange can be used as rescue therapy. Several 

studies have also been performed to evaluate the beneficial use of immunosuppressant agents in 

the treatment of CIDP.   

Long-term prognosis is dependent on the age of onset, clinical course of the disease and initial 

response to treatment. Young patients with a rapid onset or a monophasic course are more likely 

to respond to treatment and recover completely, while in elderly patients (more than 60 years) 

the frequency of fully recovery after treatment is less that younger ones. Moreover proximal 

weakness has been linked to a higher remission rate and better prognosis compared to clinical 

patterns with distal weakness. In addition, progressive course and axonal degeneration are the 

main negative prognostic factors of CIDP, meaning that patients with monophasic or relapsing-

remitting courses have a better prognosis than other patients [16].  

Few studies have been performed on genetics of CIDP, nevertheless a strong association with a 

specific gene have not yet been demonstrated. In agreement with that, several works reported 

polymorphisms in the HLA region, but they failed to detect a well-defined associations, due to the 

small number of patients and because of the heterogeneity of CIDP [18-21]. Another study suggest 

a gender-specific association of DR2 alleles in female patients [22] and recently Mrad et al., by 

analyzing HLA-DR/DQ allele in a Tunisian population, have been found an association with the 

HLA-DRB1*13 allele [23]. Despite these findings, a significant association has been identified in a 
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homozygous genotype for a low repeat number of tandem GA in the SH2D2A gene, encoding for a 

T-cell-specific adapter protein (TSAD) [24]. Furthermore, two controversial studies have been 

reported that a SNP in the transient axonal glycoprotein-1 (TAG-1) gene is associated with IVIgs 

responsiveness in Japanese CIDP patients [25], by contrast no association has been found in 

Chinese patients [26].  

 

Understanding of CIDP immunopathogenesis 

Several evidences support that CIDP is an autoimmune disease: 

- presence of inflammation in the site of lesions; 

- response to immunomodulatory treatments;  

- presence of autoantibodies against myelin antigens. 

In the pathogenesis of the disease both humoral and cell-mediated immune response are directed 

against peripheral nerve antigens, leading to demyelination and secondary to axonal loss, the 

major feature causing the neurological disability. Although many efforts carried out in this way, 

the target antigen of the immune attack has not yet been identified. In animal models, 

experimental autoimmune neuritis (EAN) can be induced by immunisation with peripheral nerve 

myelin or myelin proteins with Freund’s adjuvant. A similar disease can be induced also in Lewis 

rats with purified myelin protein (P2), myelin protein zero (P0) and peripheral myelin protein 22 

(PMP22), candidate autoantigens in CIDP [27]. Immunohistochemical studies from nerve biopsy 

specimens of CIDP patients show an increased number of T cell with ϒδ–receptors, suggesting a T 

cell response against a non-protein antigen, such as gangliosides [28].  

Several evidences from human patients and animal model studies identify the presence of T 

lymphocytes, belonging to both CD4+ and CD8+ subsets, demonstrating that CIDP is a 

predominantly T driven disease [17]. Moreover, increased serum levels of tumor necrosis factor-α 

(TNF-α) and IL-2 have been found in patients, suggesting T cell activation [16]. Activated T cells 

cross the blood-nerve barrier (BNB) to reach PNS, in a process that involves homing, adhesions 

and transmigration. An increase in adhesion molecules, MMPs (especially MMP-9 and MMP-2) and 

chemokines has been found in CSF, serum and nerves of CIDP patients [16, 27]. In addition, the 

tight-junction proteins, claudin-5 and ZO-1 (zona occludens protein 1) are down-regulated in sural 

nerve biopsy specimens, demonstrating a damage to BNB [29]. Following transmigration, T cells 

are reactivated inside the endoneurium, as suggested by Schwann cell expression of CD58, the 

adhesion and T cell stimulatory molecule, found in nerve samples from CIDP patients [30].  
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Furthermore, Comi et al. have demonstrated that T cell apoptosis is impaired in CIDP patients, 

which T cells display lower Fas function, a death receptor expressed on activated lymphocytes that 

is involved in switching-off the immune response, compared to both healthy controls and GBS 

patients [31]. Besides, T cell suppression is also defective, as CIDP patients show a significant 

reduction in both number and suppressive function of Tregs compared to healthy controls [32]. 

Several co-stimulatory molecules implicated in T cell activation, such as B7-1 (CD80) [33] and BB-1 

[34], has been found up-regulated in biopsy sample from patients, suggesting a potential role in 

the disease. In addition, non-obese diabetic (NOD) mice, deficient in B7-2 (CD86) co-stimulation, 

develop a spontaneous autoimmune peripheral polyneuropathy, which has many similarities with 

the human disease [35]. The inducible co-stimulatory molecule (ICOS), expressed by T cells, and its 

ligand (ICOS-L), localized on macrophages, have been identified in nerves from CIDP and GBS 

patients [36]. Macrophages have a double role in the pathogenesis of CIDP: from one side they act 

as antigen presenting cells that sustain the immune response, on the other hand they actively 

cause demyelination, probably enhancing their phagocytic and cytotoxic activity, with the  

production of pro-inflammatory cytokines and the release of toxic mediators such as oxygen 

radicals, nitric oxide metabolites, arachidonic acid metabolites, proteases and complement 

components [17]. In fact, macrophages, that invade the endoneurium, express pro-inflammatory 

cytokines and cyclo-oxygenase 2 [37].  

Despite the role of autoantibodies in the pathogenesis of CIDP has been suggested since more 

than 20 years ago, antibodies against component of peripheral nerve myelin or neuronal antigen 

have been inconsistently found in patients [27]. Experimental animal studies has been 

demonstrated that the intraneural injection of serum or purified IgG from patients induce 

conduction block and demyelination in rat nerves. In these studies, P0 has been identified as one 

of the putative antigen and autoantibodies against these proteins are also detected in some CIDP 

patients [38]. In agreement with this, in another murine model the adoptive transfer of P0-

reactive T cells are able to induce the neuropathy [39]. Moreover, in another study P2 seem to be 

the most likely candidate [40]. The effectiveness of plasma exchange in the treatment of CIDP 

support the role of humoral factors, but improvement may additionally bring on the elimination of 

inflammatory mediators that contribute to demyelination and subsequently axonal loss [16].  
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SECTION 1 

Role of UNC13D gene in MS development 

 

1.1  Background: UNC13D gene and role in human diseases 

The human UNC13D gene (unc13 homolog D, referred to C. Elegans gene) is located on 

chromosome 17q25 and consists of 32 exons encoding for Munc13-4, a protein of 1090 amino 

acids. Munc13-4 is a member of Munc13 family of proteins involved in vesicle priming function 

that include four homologous isoforms. Munc13-2 is ubiquitously expressed, while Munc13-1 and 

Munc13-3 are mainly present in the brain. Munc13-4 is the isoform lastly discovered and is highly 

expressed in hematopoietic cells, such as CTLs, natural killer (NK) cells and platelets. Munc13-4 

exhibit the typical Munc13 domain structure with two Munc13 homology domain (MHDs), 

involved in the protein localisation, two C2 domains, known to bind calcium and phospholipids, 

but lack the N-terminal phorbol ester-binding C1 domain, present in other Munc13 proteins [41-

42]. It participates in the cytotoxic granule exocytosis, important in the perforin-dependent 

pathway for the cytotoxic function of CTLs and NK cells, that play a crucial role in both immune 

surveillance and immune regulation (together with death receptor-dependent pathway). This 

process involves the formation of granules, their fusion with the plasma membrane and the 

release of their contents (perforin and granzymes) through the immunological synapse on target 

cells that undertake the apoptotic cell death. In particular, Munc13-4 is involved in the cytolytic 

granule maturation, mediating the association of recycling endosomes (through Rab11) with late 

endosomes (through Rab7) that form exocytic vesicles, carrying effector proteins of the exocytic 

machinery, such as Munc13-4, Rab27a and SLP2 (synaptotagmin-like protein). Following target cell 

recognition, these vesicles coalesce with perforin-containing granules and are tethered to the 

plasma membrane. Moreover Munc13-4 also mediates a priming step that is required to enable 

fusion of the cytotoxic granules with the plasma membrane: Munc13-4 probably triggers the 

conformational change of the docking complex Syntaxin11/Munc18-2 in the active form, 

regulating the interaction between SNARE proteins (N-ethilmaleimide-sensitive factor attachment 

protein receptors) expressed on the vesicle membrane (v-SNARE) and on target membrane (t-

SNARE) important for the fusion step [43].   

Mutations of UNC13D gene are responsible for approximately 40% of cases of familial 

haemophagocytic lymphohistiocytosis type 3 (FHL3) [42], an autosomal recessive disease affecting 
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infants and young children. Mutations in other genes involved in the exocytosis of cytotoxic 

granules pathway are also identified in patients affected by FHL and include loss-of-function 

mutations in the perforin (PRF1) gene (FHL2), syntaxin-11 (STX11) gene (FHL4) and Munc18-2 

(STXBP2) gene (FHL5). The clinical features of the disease include fever, splenomegaly, 

hepatomegaly, anemia, thrombocytopenia and neutropenia. NK and CTL cytotoxicity are severely 

impaired. Moreover, the disease is also characterized by an uncontrolled immune response that 

results in infiltration and destruction of tissues by activating macrophages (CD68+) and CD8+ T 

cells, followed by the release of pro-inflammatory cytokines. Activated macrophages and T cells 

are often present in the bone marrow, spleen, lymph node, liver and CNS, however other organs 

may also be infiltrated [44]. Patients carried UNC13D mutations show a correct docking of 

cytotoxic granules at the site of secretion, but these vesicles cannot fuse with the plasma 

membrane and are not able to secrete their content, leading to a defective cytotoxic activity [42, 

44].  

1.2   Rationale for the study and specific aims 

Several findings suggest that death receptor- and perforin- dependent pathways are fundamental 

for immune surveillance and regulation and that absent or decreased function of proteins involved 

in these pathways predisposes to autoimmunity.  

FHL is a lymphoproliferative disorder in which a role of both PRF1 and UNC13D gene mutations 

has been demonstrated. Mutations in PRF1 gene, encoding for perforin, a molecule stored in the 

cytotoxic granules, lead to FHL2, while mutations in UNC13D gene, encoding for Munc13-4, a 

protein responsible for the priming of the cytotoxic vesicles before their fusion with the plasma 

membrane, are found in patients with FHL3 [44]. 

Autoimmune lymphoproliferative syndrome (ALPS) is an inherited autoimmune disease caused by 

mutations of several genes involved in the Fas death receptor-dependent pathway [45]. The 

disease is characterized by defective Fas function, accumulation of non malignant lymphocytes in 

the lymphoid organ with lymphadenopathy/splenomegaly, autoimmune manifestation and 

expansion of CD4/CD8 double negative (DN) T cells [46]. In most ALPS patients (ALPS-FAS) are 

found mutations in the Fas gene (FAS), but a small number of patients (ALPS-FASL and ALPS-

CASP10) carried mutations of Fas ligand (FASL) or caspase-10 (CASP10), downstream effectors in 

the Fas/FasL pathway. Moreover, in a substantial proportion of patients (ALPS-U) the mutated 

gene is unknown, but it may be another downstream component of the pathway. It is also been 

described an incomplete form of ALPS showing defective Fas function, autoimmunity and 
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lymphoproliferation, but lacking of DN T cell expansion that has been named Dianzani 

lymphoproliferative disease (DALD) [47]. 

Variations in PRF1 gene are associated to ALPS/DALD in subject with defective Fas function [48]. In 

addition, concerning UNC13D gene, we have identified four rare missense variations in 3 

heterozygous ALPS patients carrying p.Cys112Ser, p.Val781Ile and a haplotype comprising both 

p.Ile848Leu and p.Ala995Pro and we have demonstrated that these loss of function variations are 

risk factors for ALPS development [Article 1]. 

Defective Fas function are also been found in MS: Fas-induced cell death is significantly lower in 

patients than controls and the Fas defect is more frequent in patients with progressive forms of 

the disease, suggesting that it may favour the progression of MS [49]. Furthermore, perforin gene 

variations have been associated to MS: two FHL2-associated variations (A91V and N252S) and 

other six novel mutations (C999T, G1065A, G1428A, A1620G, G719A, C1069T) were found in MS 

patients. Such variations collectively confer susceptibility for the disease [50]. These results 

highlight that MS (similarly to ALPS) shows defective Fas function and variations of perforin gene 

that are involved in the down-modulation of immune response thus predisposing to 

autoimmunity.  

On the basis of these findings, the aim of this study was to assess the role of UNC13D, another 

gene involved in perforin-dependent pathway, in the development of MS. 

1.3  Results and conclusions 

As reported in the following article, the entire UNC13D coding region has been sequenced in 38 

MS patients and has been compared to 61 healthy controls, 21 ALPS and 20 DALD patients. Two 

frequent variations has been found in MS patients: p.Ala59Thr (c.175G>A; rs9904366) and 

p.Arg928Cys (c.2782C>T; rs35037984), previously described in FHL patients. The first variation 

p.Ala59Thr is carried by 3 MS patients and 5 healthy controls, but it is also identified in 1 ALPS and 

1 DALD patient. The second variations p.Arg928Cys is carried by 2 MS patients, 8 healthy controls, 

1 ALPS and 2 DALD patients. These variations have been detected in all patients and controls with 

similar allelic frequencies (p.Ala59Thr: MS 4%, ALPS 2,4%, DALD 2,5%, healthy controls 4,1%; 

p.Arg928Cys: MS 2,6%, ALPS 2,4%, DALD 5%, healthy controls 6,5%,) demonstrating that they are 

not a risk factor for MS development.  
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SECTION 2 

Role of osteopontin in MS development and progression 

 

2.1 Background: OPN, role in immune regulation and association with MS  

Osteopontin (OPN) is a glycosylated phosphoprotein, expressed in a variety of tissues and cells and 

secreted into body fluids. It was firstly discovered as a bone matrix protein and subsequently 

identified as cytokine (early T cell activation, Eta-1) produced by activated T cells and transformed 

cell lines. OPN binds certain integrins and CD44 variants ubiquitously expressed, mediating cell 

adhesion, migration and survival in several cell types. Through these interactions OPN is involved 

in many physiological and pathological processes such as wound healing, bone turnover, 

tumorigenesis, inflammation, ischemia and immune responses. The OPN encoding gene, SPP1 

(secreted phosphoprotein 1), formed by 7 exons and 6 introns, is mapped on human chromosome 

4q21-q25. The full-length protein is composed of 324 amino acids, with a molecular weight that 

vary between 25 and 80 KDa, depending to post-translational modifications, that include 

glycosylation, phosphorylation and proteolytic cleavage by thrombin and MMPs, important for the 

protein function. OPN has a RGD (arginine-glycine-aspartate) domain, common to many 

extracellular matrix proteins, that is involved in the integrin engagements. After proteolytic 

cleavage by thrombin, OPN expose the peptide sequence SVVYGLR, important in promoting the 

adhesion of cells expressing α4 and α9 integrins (α9β1, α4β7), as leukocytes. OPN is also cleaved 

by MMPs, in particular MMP-3 and MMP-7 [51]. The protein also contains an aspartate-rich 

region, two heparin-binding site and a region near the C-terminus that binds specific CD44 

variants, as v6- and v7- containing isoforms. Though this interaction, important for the 

immunomodulatory function of the protein, OPN reduces the expression of the anti-inflammatory 

cytokine IL-10 and favours the production of the pro-inflammatory IL-12, sustaining a Th1 

response [52]. It has also been demonstrated that CD44-v6 blocks Fas-mediated apoptosis, 

probably interfering with the receptor trimerization, an important step for the activation of the 

apoptotic pathway. Moreover, it has been postulated that OPN may enhance the interaction of 

CD44-v6 with Fas, exerting in this way their anti-apoptotic ability [53]. Furthermore, an 

intracellular form of OPN (iOPN), generated by an alternative downstream translation start site, 

and lacking the N-terminal signal protein sequence has been described. iOPN favors the 
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polarization of Th17 cells, down-regulating the dendritic cells (DCs) production of the inhibitory 

cytokine IL-27 (inhibitor of IL-17) [54]. 

In the immune system, OPN is expressed by many different cell types including macrophages, 

neutrophils, DCs, NK cells, T and B lymphocytes [51]. Monocytes show low level of OPN that 

increase during differentiation. OPN is constitutively expressed in macrophages and regulates their 

functions such as migration, activation, phagocytosis, pro-inflammatory cytokine production and 

nitric oxide synthesis, in response to inflammatory stimuli. It also plays an important role in 

neutrophil recruitment at inflammatory sites, acting as a chemoattractant factor [51]. OPN is also 

involved in the regulation of DCs function: it is highly expressed in immature DCs and promotes 

their maturation, followed by their migration in peripheral lymph nodes, where they present 

processed antigens to naïve T cells [55]. It has also been demonstrated that OPN-activated DCs 

produce IL-12 and TNF-α, sustaining Th1 polarization [56]. As previously reported, OPN is secreted 

by activated T cells and is involved in cell-mediated immunity: OPN enhances Th1 response, 

supporting IFN-γ production from T cells and IL-12 production from macrophages, but also 

inhibiting the production of IL-10 (Th2 response). It also modulates the proliferation and 

differentiation of T cells and induces B cell proliferation and antibody production.  

All these findings can in part explain the pro-inflammatory capacity of OPN and its involvement in 

autoimmunity. The up-regulation of OPN has been linked to the pathogenesis of many 

autoimmune diseases such as MS, systemic lupus erythematosus (SLE), rheumatoid arthritis, 

atherosclerosis and other inflammatory diseases including cardiovascular disease, inflammatory 

bowel disease and asthma [51]. The association with MS is supported by several findings. OPN is 

the cytokine mostly expressed in lesions from MS patients and [57] its levels are significantly 

higher in RRMS compared to patients with progressive courses of the disease, particularly during 

relapses [58, 59]. In addition, several evidences from EAE models demonstrate that OPN have an 

important role in inducing relapses and in the progression of the disease. In particular, it has been 

demonstrated that SPP1 knock-out mice are resistant to the progressive form of EAE and the 

administration of OPN in those mice induce recurrent relapses, worsening paralysis and 

neurological deficits, including optic neuritis. OPN triggers neurological relapses through two 

mechanisms: on one hand, OPN stimulates myelin-specific T cells to expressed pro-inflammatory 

mediators, including Th1 and Th17 cytokines that are regulated by NF-KB (nuclear factor-KB). On 

the other hands, OPN inhibits FOXO3A-(forkhead box O3A)-dependent apoptosis of autoreactive 

immune cells. These OPN mediated signalling results in the survival of autoreactive T cells [60, 61]. 
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Also Th17 cells play a role in the pathogenesis of MS. It has been demonstrated that OPN 

expression is increased in DCs during EAE and MS and induces the production of IL-17 by T cells, 

suggesting that OPN is a key mediator that amplifies the inflammatory process in MS and this 

relationship may be implicated in other autoimmune diseases [62].  

Several genetic studies has been performed on the SPP1 gene. It has been identified four OPN 

SNPs: +282T>C in exon 6 (rs4754), +750C>T in exon 7 (rs11226616), +1083A>G (rs1126772) and 

+1239A>C (rs9138) in the 3’-untranslated region (3’-UTR), forming three haplotype combinations 

(haplotype A: 282T-750C-1083A-1239A; haplotype B: 282C-750T-1083A-1239C; haplotype C: 282C-

750T-1083G-1239C) that have been linked to several autoimmune disease [63-67]. In particular, 

carriers of haplotype B or C display about 1,5 higher risk of developing MS [65], type 1 diabetes 

[66] and SLE [64] and about 8 higher risk of developing ALPS [63], than haplotype A homozygotes. 

In addition, it has been demonstrated that these genotypes also correlate with OPN serum levels: 

haplotype B and C are associated to high OPN level than haplotype A homozygotes, probably due 

to the increased stability of mRNA coded by haplotype B and C [63]. Furthermore, haplotype A 

homozygous MS patients show a slower switch from a RR to a SP form and milder disease with 

slower evolution of disability in comparison to patients carrying haplotype B or C [65]. Moreover, 

in the promoter region of SPP1 gene has been identified three SNPs that may modulate its 

transcriptional activity and include -66T>G, -156G>GG (rs7687316) and -443T>C [68]. It has been 

demonstrated a combined effect of -156G>GG and +1239A>C on risk of SLE development [64].  

2.2  Rationale for study and specific aims 

Several findings have demonstrated that OPN has a role in the pathogenesis of MS. In particular, 

OPN is highly expressed in MS lesions [57] and its levels are increased, mainly during relapses, in 

patients with RR course than in patients with progressive forms of the disease [58, 59]. 

A previous study on SSP1 gene showed that haplotype A carriers have a 1,5 lower risk of 

developing MS than haplotype B or C carriers and they are characterized by a slower progression 

of the disease to SP form with slower evolution of disability than other patients [65]. The 

+1239A>G SNP is located on 3’ end of the gene and allows to discriminate between haplotype A 

(carrying the +1239A allele) and haplotype B or C (carrying the +1239G allele). It has been 

demonstrated that this SNP and another one located in the promoter region of OPN gene 

(156G>GG) contribute to SLE susceptibility [64].  

The following study [Article 2] aims at extending the analysis of +1239A>C SNP in a much larger 

cohort of MS patients compared to a previous study [65] and at investigating for the first time the 
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role of the -156G>GG SNP in the development of the disease. Moreover, this study also points at 

assessing the impact of these variations on disease evolution.    

2.3 Results and conclusions 

By sequencing analysis, the +1239A>C SNP has been typed in 728 MS patients and 1218 healthy 

controls, while the -156G>GG SNP has been typed in the same patients and 912 controls. The 

frequency of +1239A homozygotes are decreased in MS patients than controls (46% vs 52%; 

p=0,011) and they display 1,27 lower risk of MS than +1239C carriers. These findings confirm the 

previous results [65] and show that +1239A carriers display a slight protection against MS 

development. On the other hands, the analysis of the frequencies of -156G>GG SNP have not 

revealed any statistically significant difference between patients and controls. Nevertheless, the 

results from the impact of these variations on the MS course have been confirmed not only the 

correlation between +1239A>C SNP and disease progression, but also have been displayed a 

significantly lower relapse rate in +1239A homozygous patients, supporting the establish role of 

OPN in MS relapses. Intriguingly it has also been detected an additional effect of -156G>GG on 

disease progression since patients homozygous for both +1239A and -156GG show a milder 

disease, with slower switch from RR to SP form of MS and slower progression of disability than 

other patients, suggesting that -156GG homozygosity in the 5’ end of the gene confer a further 

protection, especially in subject carrying the protective genotype at the 3’ end of the gene.  
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SECTION 3 

Role of perforin gene in CIDP 

 

3.1  Background: perforin and its role in human diseases 

Perforin is a pore-forming protein of about 67 KDa, expressed in cytotoxic lymphocytes (CTLs and 

NK cells), that has an important role in immune regulation and surveillance. It takes part at the 

perforin-dependent secretory granules death pathway: in particular it is stored in secretory 

granules and after their release in the immunological synapse, it polymerizes and forms a 

transmembrane pore allowing the entry of the pro-apoptotic serine proteases (granzymes) into the 

cytosol of target cells [43]. The human PRF1 gene, located on chromosome 10q22, is composed of 

three exons, which exons 2 and 3 forms the coding sequence. Perforin is a multidomain protein of 

555 amino acids. It is synthesized as inactive precursor containing an N-terminal leader peptide 

which is cleaved to the active form of protein characterized by a positively charged N-terminal 

peptide with lytic activity (lytic peptide). Perforin also contains one putative amphipathic α-helical 

domain, in the centre of their sequence, which shares some similarity to membrane-attack 

complex (MAC)-like proteins, particularly C9 complement protein, involved in membrane insertion; 

two long regions of low homology at the N- and C-terminal to the MAC-like domain, characteristic 

of perforin and conserved through evolution; an epidermal growth factor (EGF)-like domain of 

unknown function and a carboxil C2 domain, that binds calcium and it is important for the 

regulation of perforin cytotoxic activity [69]. In particular, it has been demonstrated that conserved 

aspartate residues at position 429, 435, 483 and 485 in the perforin C2 domain are essential for its 

calcium-dependent plasma membrane binding and cell lysis. Moreover, at acidic pH (<5) of 

granules, that is perforin storage condition, these residues are protonated (uncharged) and are 

incapable of binding calcium, preventing premature activation of perforin until exocytosis and 

protecting the cell from autolysis during their synthesis and trafficking [70]. Finally, the cleavage of 

the N-glycosilated C-terminus of the protein allows the C2 domain to bind the membrane [71].  

As previously reported, mutations in PRF1 gene account for up to 30% of all FHL2 cases and include 

frameshift, nonsense and missense mutations that compromise the cytotoxic lymphocyte function 

[72]. In addition, it has also been found that variations of PRF1 gene are susceptible factors for the 

development of some autoimmune disease, such as ALPS/DALS [48], type 1 diabetes [73] and MS 

[50]. In particular, concerning lymphoproliferative disease with defective Fas function, two FHL2-
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associated variations, N252S and A91V, have been linked respectively to ALPS and DALD, and 

intriguingly DALD patients that carried A91V and osteopontin gene variations have been an 

increased risk of developing the disease [48]. These variations with other six novel mutations 

(C999T, G1065A, G1428A, A1620G, G719A, C1069T) of PRF1 gene have been also associated to MS. 

A91V has been the most frequent variation observed and increase the risk of MS of about 1,4-fold 

[50].   

3.2 Rationale for study and specifics aims 

CIDP is a demyelinating autoimmune disease of PNS in which pathogenesis are involved humoral 

and cell-mediated immunity [27]. It has been demonstrated that Schwann cells, that forms the 

myelin sheath around neuronal axons, are able to induce the apoptosis of infiltrating T cells 

through Fas ligand and perforin pathways, providing a protection against immune attacks of PNS 

[74]. Moreover, Comi et al. have been reported that CIDP patients display defective Fas function, 

which also correlates to disease development and progression [31, 75, 76]. Defective Fas function 

has also been showed in MS patients [49], suggesting that defective Fas-mediated apoptosis may 

be involved in the development of diseases affecting the central and peripheral nervous system 

[77]. The findings that PRF1 variations are susceptible factors for autoimmunity, as it has been 

previously demonstrated for ALPS/DALD [48] and MS [50], prompt to search for PRF1 variations 

also in CIDP patients, aiming to investigate the role of perforin in the development of CIDP, as it has 

been performed in the following study.  

3.3 Materials and methods 

3.3.1 Patients 

Genomic DNA samples have been isolated using standard methods from peripheral blood of 94 

CIDP patients, diagnosed according to the American Academy of Neurology criteria (Ad Hoc 

Subcommittee of the American Academy of Neurology AIDS Task Force) [78]. All patients 

underwent routine analyses to rule out other causes of neuropathy, CSF examination, and 

electrodiagnostic tests. Patients have been enrolled from the Neurology Departments of the 

following institutions: University of the Eastern Piedmont ‘Amedeo Avogadro’ Novara (6), 

University of Padua (33), University of Turin (31), and L. Sacco Hospital, University of Milan (24). It 

has been also analysed the genomic DNA of 158 healthy Italian donors as controls, which samples 

have been obtained from the transfusion services of the Neurology Departments of University of 
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the Eastern Piedmont ‘Amedeo Avogadro’ Novara. Patients and controls are unrelated, Caucasian 

and Italian, matched for age and gender and analysed in parallel.  

3.3.2 DNA analysis 

From DNA genomic samples of each subjects enrolled in this study, the entire coding region of 

PRF1 (exon2 and exon3) has been amplified and sequenced as previously reported [48]. For allele-

specific PCR the wild-type (4R) and mutant (4H) alleles have been independently amplified using 

specific PCR amplification of genomic DNA (forward primer: 4Rfor 5’-tctgcagctccatggcagtccg-3’ or 

4Hfor 5’-tctgcagctccatggcagtcca-3’; reverse primer used for amplification of exon 2). R4H and 

A91V substitutions have been typed by using the same primers. 

3.3.3 Statistical analysis 

Allelic frequencies have been compared with the chi-square test with the Yates’ correction. All p 

values are two-tailed and the significance cut-off is p<0,05.  

Putative functional significance of the missense variations have been evaluated with the PolyPhen 

program (http://genetics.bwh.harvard.edu/pph).  

3.4 Results and conclusions 

By sequencing PRF1 coding region in 94 CIDP patients and 158 healthy matched controls three 

missense variations have been identified, C272T (rs35947132), G11A (rs35418374) and C1153T 

(numerations are referred to the GenBank cDNA clone M28393, ATG=1) that lead to A91V, R4H 

and R385W amino acids substitution at the protein level and a nonsense variation, C1267T, 

resulting in a premature stop codon (Q423X). A91V and R4H variations have been described in 

general population, nevertheless A91V has been previously associated to FLH2 [72], DALD [48] and 

MS [50], whereas R4H has been reported in a patient with acquired aplastic anemia [79]. The 

R385W has been described in a patient with lymphoma [80], instead Q423X variation is novel. The 

PolyPhen algorithm has been used to predict the functional effect of R385W missense variation 

and showed that may damage the function and structure of the protein (R385W: score=0,959). 

Indeed, the Q423X variation, may affect protein function missing the C2-domain, responsible for 

the calcium-dependent plasma membrane binding (Figure 3.1, A-B). 

Moreover, it has also been identified two synonymous variations, C822T (rs885821) and C900T 

(rs885822) respectively, previously reported as common polymorphisms. Their frequencies have 

been similar in patients and controls (data not shown). 

A91V is carried by 18 CIDP patients (16 heterozygotes and 2 homozygotes) and 9 healthy controls 

(all heterozygotes). Interestingly, R4H variation has been detected in heterozygosis in 1 CIDP 
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patient that has been also heterozygous for A91V variation. Through allele-specific PCR analysis 

the two variations have been found on different alleles (Figure 3.1, C-D).  

Moreover, PolyPhen algorithm has predicted the functional effect of R4H missense variation may 

damage the function and structure of the protein (R4H: score=1). 

 

 

Figure 3.1: On the left electropherograms of the variations R385W (A) and Q423X (B), carried by two different CIDP 

patients. On the right, electropherograms of biallelic mutations R4H (C) and A91V (D) found in a CIDP patient.  

 

 

 

 

All together, the frequency of these variations are significantly higher in patients compared to the 

controls conferring a risk about 4,47-fold to develop CIDP (21,28% vs 5,69%; OR=4,47; 95% CI:1,82-

11,22; p=0,00039) (Table 3.1).  
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Table 3.1: Summary of the genotypes of 94 CIDP patients and 158 controls carrying PRF1 variations. 

 

Allele 1 Allele 2 CIDP Controls

(n=94)
a

(n=158)
a

A91V A91V 2 0

A91V R4H 1 0

A91V wt 15 9

R385W wt 1 0

Q423X wt 1 0

Total 20 9

(21.28%) (5.69%)

b
OR=4.47; 95% CI: 1.82-11.22; p =0.00039

 

 

Abbreviations: CI, confidence intervals; OR, odds ratio; wt, wild type. a: number of subjects (frequency in the brackets). 

b: OR and 95% CI limits; p=values are two-tailed. 

 

 

Interestingly, A91V has been the most frequent variation identified in CIDP patients than controls, 

and by itself it confers a risk about 3,92-fold (OR=3,92, 95% CI:1,57-9,96; p=0,0017) (Table 3.2). 

 

Table 3.2: Genotype frequencies of A91V in CIDP patients (n=94) and healthy controls (n=158). 

 

Genotype CIDP (n=94)
a

Controls (n=158)
a

AA 76 (0.81) 149 (0.94)

AV 16 (0.17) 9 (0.06)

VV 2 (0.02) 0 (0)

AV+VV vs AA
b
OR=3.92; 95% CI: 1.57-9.96; p =0.0017

 
Abbreviations: CI, confidence intervals; OR, odds ratio. a: Number of subjects; frequencies are shown in the brackets. 

Genotypic distribution did not deviate significantly from the Hardy–Weinberg equilibrium in any group (data not 

shown). b: OR and 95% CI limits; p-values are two-tailed. 

 

 

The pathogenic role of A91V variation has been also supported by several functional studies, 

demonstrating an impaired protein expression and a partial loss of its citolytic activity [81-83] and 

finally compromising the immune homeostasis if the variation is inherited in homozygosis or if it is 

coinherited with another mutated PRF1 allele [84]. In this cohort of CIDP patients, 91V allele alone 
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has conferred a risk about 4-fold to develop CIDP; though almost of patients are carried this 

mutation in heterozygosis and only in 2 patients it is found in homozygosis. Interestingly, one 

patient is carried of the biallelic mutations: A91V and R4H respectively. R4H variation has been 

previously reported in heterozygosis in a patient with acquired aplastic anemia and this mutation 

resulted in null perforin protein expression and NK cells cytolitic activity [79]. This is also 

confirmed by PolyPhen algoritm which has been predicted that this variation is probably 

damaging, with maximum score. On the basis of these evidences, in this patient both variations 

might have contributed to its CIDP peculiar phenotype.  

In addition, other PRF1 variations have been found in CIDP patients. One patient is carried the 

R385W substitution previously described in a patient with lymphoma [80], but its functional effect 

has not been elucidated yet. In silico analysis performed by using PoliPhen software have been 

predicted that it may damage perforin structure and function. In another patient a novel variation 

Q423X of perforin has been found in heterozygosis, leading a truncated protein of C2-domain, 

involved in the calcium-dependent plasma membrane binding, responsible for its cytolytic activity 

[70]. In conclusion, this work suggests that private missense PRF1 variations and the common 

A91V variation may have a mild effect on CIDP development, because most of them have been 

found in heterozygosis, by compromising one PRF1 allele. Nevertheless, other clinical analysis are 

needed in CIDP patients that carried these variations, to further explore their impact on the course 

of the disease. These findings suggest that perforin may have both a protective and a detrimental 

role, depending on the local context and disease stage. On one side perforin physiologically 

protects peripheral nerve from autoimmune attacks as following its release by Schwann cells. On 

the other hand, CTLs released perforin may also contribute to the damage of peripheral nerve 

tissue too. Impaired perforin function in CIDP patients associated with defective Fas function may 

be responsible for defective apoptosis leading to demyelination; and from other point of view  a 

reduction in its function when mutated may cause a mild axonal damage in patients carrying these 

mutations.  
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SECTION 4

Role of osteopontin in CIDP 

 

4.1 Rationale for study and specific aims 

As of today, few evidences on the role of OPN in inflammatory polyneuropathies have been 

reported. It has been demonstrated that OPN is constitutively expressed in PNS and its expression 

is up-regulated in EAN model [85]. Furthermore it has been suggested that the interaction 

between OPN and CD44-v6 may be involved in the inhibition of Fas-mediated apoptosis [53] and 

Comi et al. have shown that Fas function is defective in CIDP patients [31]. In addition, it has been 

demonstrated that OPN enhances Th1 and Th17 responses, that are involved in the pathogenesis 

of several autoimmune diseases [51, 52]. The role of Th1 and Th17 cells in the pathogenesis of 

CIDP has not been established yet, however it has been recently reported that Th17 cells frequency 

is significantly higher in the peripheral blood mononuclear cells (PBMCs) and CSF of active CIDP 

patients in comparison to remitting CIDP patients, suggesting that these cells may be important for 

the evolution of the disease [86].  

Based on this findings, this study aims to assess the role of OPN in the development of CIDP, 

evaluating OPN plasma levels though a ELISA assay in CIDP patients compared to healthy controls 

and typing the CIDP patients for the +1239A>C variation, located in 3’ end of OPN gene.  

4.2 Materials and Methods 

4.2.1 Patients 

Genomic DNA has been analysed in 64 CIDP patients diagnosed according to the American 

Academy of Neurology criteria [78] (see section 4) and plasma OPN levels has been evaluated in 44 

CIDP patients of the previously group and 22 healthy controls, which samples have been obtained 

from the transfusion services of the Neurology Departments of University of the Eastern Piedmont 

‘Amedeo Avogadro’ Novara. Patients and controls are unrelated, Caucasian and Italian, matched 

for age and gender and analysed in parallel.  

4.2.2 Sample preparations 

Genomic DNA samples of each subject enrolled in the study have been isolated from peripheral 

blood using standard methods. Plasma samples have been obtained after centrifugation and stored 

at -80°C for measurements of cytokine levels. 
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4.2.3 DNA analysis 

From genomic samples, the +1239A>C SNP of OPN gene has been typed as previously reported 

(article 2).  

4.2.3 OPN ELISA assay  

Plasma OPN concentration has been evaluate in a capture enzyme-linked immunoadsorbent assay 

(ELISA) according to the protocol provided by the manufacturer (IBL, Gunma, Japan). All assays 

have been performed in duplicate. The optical density has been measured at 450 nm with a 

microplate reader (Bio-Rad, Hercules, CA, USA).  

4.2.4 Statistical analysis 

ELISA data comparisons have been performed with the nonparametric Mann-Whitney U-test. The 

p value is two-tailed and the significance cut-off is p<0,05. 

4.3 Preliminary results and conclusions 

4.3.1 CIDP patients display increased OPN plasma levels 

 

 

Figure 4.1: OPN concentration in plasma samples from 44 CIDP patients and 22 age-matched healthy controls. Lines 

indicate the median values for each group (CIDP patients: 233,5 ng/mL; controls:129,6 ng/mL). The p value has been 

calculated using the Mann-Whitney U test.  

 

 

OPN concentration has been evaluated performing an ELISA assay on plasma samples from 44 CIDP 

patients and 22 age-matched controls. Results show that OPN plasma levels are significantly 
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increased in CIDP patients compared to controls (mean value: CIDP patients 233,5 ng/mL vs 

controls 129,6 ng/mL; p=0,011).  

4.3.2 Analysis of OPN +1239A>C SNP in CIDP patients 

Genotype CIDP (n=64)

AA 30 (47)

AC 26 (41)

CC 8 (12)

AA 30 (47)

Non-AA 34 (53)

SNP + 1239

 

Table 4.1: Frequency distribution of OPN +1239A>C genotypes in CIDP patients. Number of subject and proportions are 

shown in the brackets. 

 

The +1239A>C SNP located on 3’ end of OPN gene has been typed also in 64 CIDP patients. The 

frequency of homozygotes for +1239A allele is similar to those previously reported in MS patients 

(47% vs 46%) (article 2).  

 

These preliminary results suggest that OPN may be involved in CIDP, but further studies are needed 

to clearly establish the role of OPN in CIDP development. Firstly these findings must be confirmed 

in a larger sample of patients compared to age-matched controls. In addition, it can be observed if 

the increased OPN plasma level are due to inflammation that generally occurs in CIDP or to the 

genetic variations, since it has been demonstrated in several autoimmune diseases including MS 

[65] that haplotype B or C carriers show higher OPN level than haplotype A carriers. Furthermore, 

the role of these variations on CIDP evolution may be assess by analysing their frequency in 

comparison to the clinical courses of the disease.   
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ABBREVIATIONS 
 

A 

AIDS: acquired immune deficiency syndrome. 

ALPS: autoimmune lymphoproliferative syndrome 

APCs: antigen presenting cells. 

 

B 

BBB: blood-brain barrier. 

BNB: blood-nerve barrier.  

 

C 

CASP-10: caspase-10. 

CD4: cluster of differentiation 4.  

CD80: cluster of differentiation 80 (B7-1). 

CD86: cluster of differentiation 86 (B7-2). 

CI: confidence intervals. 

CIDP: chronic inflammatory demyelinating 

polyneuropathy. 

CNS: central nervous systems. 

CSF: cerebrospinal fluid. 

CTLs: cytotoxic T lymphocytes. 

 

D 

DALD: Dianzani lymphoproliferative disease 

DCs: dendritic cells.  

DN: double negative. 

 

E 

EAE: experimental autoimmune encephalomyelitis. 

EAN: experimental autoimmune neuritis.  

EGF: epidermal growth factor.  

ELISA: enzyme linked immunosorbent assay. 

Eta-1: early T cell activation (OPN).  

 

F 

Fas: Fas cell surface death receptor (APO-1, apoptosis 

antigen 1; CD95). 

FasL: Fas ligand.  

FHL: familial haemophagocytic lymphohistiocytosis. 

FOXO3A: forkhead box O3A. 

 

G 

GBS: Guillain-Barré syndrome. 

GWAS: Genome-Wide Association Studies. 

 

H 

HLA: human leukocyte antigen. 

 

I 

ICOS: inducible T cell co-stimulator.  

ICOS-L: inducible T cell co-stimulator ligand.  

IFNs: interferons. 

IFNγ: interferon-γ. 

IgG: immunoglobulin . 

IL-17: interleukin-17. 

IL-2: interleukin-2. 

 

 

IVIgs: intravenous immunoglobulins. 

 

M 

MAC: membrane-attack complex. 

MBP: myelin basic protein. 

MGUS: monoclonal gammopathy of undetermined 

significance.  

MHC: major histocompatibility complex. 

MHDs: Munc13 homology domains.  

miRNAs: micro-RNAs. 

MMPs: matrix metalloproteinases. 

MOG: myelin oligodendrocyte glycoprotein. 

MRI: magnetic resonance imaging. 

MS: multiple sclerosis. 

Munc13-4: protein unc-13 homolog D (C. Elegans). 

 

N 

NF-KB: nuclear factor-KB. 

NK: natural killer.  

NOD: non-obese diabetic.  

 

O 

OPN: osteopontin. 

OR: odds ratio. 

 

P 

P0: myelin protein zero. 

P2: myelin protein.  

PAD2: peptidyl arginine deaminase type II. 

PBMCs: peripheral blood mononuclear cells. 

PCR: polymerase chain reaction. 

PLP: proteolipid protein. 

PMP22: peripheral myelin protein 22.  

PNS: peripheral nervous system. 

PP: primary progressive. 

PPMS: primary progressive multiple sclerosis. 

PRF1: perforin gene. 

PRMS: progressive relapsing multiple sclerosis. 

 

R 

Rab7: Ras related protein 7.  

RRMS: relapsing-remitting multiple sclerosis. 

 

S 

S1PR: sphingosine-1-phosphate receptor. 

SH2D2: SH2 domain containing 2A, T-cell-specific 

adapter protein (TSAD) gene.  
SLE:  systemic lupus erythematosus.  

SLP2: synaptotagmin-like protein.  

SNARE: N-ethilmaleimide-sensitive factor attachment 

protein receptor. 

SNPs: single nucleotide polymorphisms.  

SP: secondary progressive. 

SPMS: secondary progressive multiple sclerosis. 
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SPP1: secreted phosphoprotein 1 (OPN gene). 

STAT3: signal transducer and activator of transcription 

3. 

STX11: syntaxin-11 gene. 

STXBP2: syntaxin-binding protein 2 (Munc18-2 gene). 

 

T 

TAG-1: transient axonal glycoprotein-1. 

Th1: lymphocyte T helper type 1. 

Th17: lymphocyte T helper type 17. 

TNF-α: tumor necrosis factor-α. 

Tregs: regulatory T cells. 

TYK2: Tyrosine Kinase 2. 

t-SNARE: target SNARE 

 

 

U 

UNC13D: unc-13 homolog D (C. Elegans). 

UTR: untranslated region. 

 

V 

VCAM-1: vascular cell adhesion molecule 1. 

VLA-4: very late activation antigen 4. 

v-SNARE: vesicle SNARE. 

 

W 

wt: wild type.  

 

Z 

ZO-1: zona occludens protein 

. 
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